题目内容

1.在等比数列{an}中,a1=1,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),f′(x)为f(x)的导函数,则f′(0)等于(  )
A.0B.26C.28D.212

分析 通过f'(0)推出表达式,利用等比数列的性质求出表达式的值即可

解答 解:因为函数f(x)=x(x-a1)(x-a2)…(x-a8),
f′(x)=(x-a1)(x-a2)…(x-a8)+x[(x-a1)(x-a2)…(x-a8)′,
则f'(0)=a1•a2…a8=(a1a84=44=28
故选:C.

点评 本题考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法,属于基础题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网