题目内容
已知|
|=|
|=|
|=1,且
=
+
(1)求证:
⊥
;
(2)设
与
的夹角为θ,求cosθ的值.
| a |
| b |
| c |
| c |
| 3 |
| 5 |
| a |
| 4 |
| 5 |
| b |
(1)求证:
| a |
| b |
(2)设
| a |
| c |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用数量积的性质可得
•
=0即可证明;
(2)对
=
+
,两边作数量积
•
=
2+
•
,化简即可.
| a |
| b |
(2)对
| c |
| 3 |
| 5 |
| a |
| 4 |
| 5 |
| b |
| a |
| c |
| 3 |
| 5 |
| a |
| 4 |
| 5 |
| a |
| b |
解答:
解:(1)∵
=
+
,
∴
2=(
+
)2=
2+
2+
•
,
∵|
|=|
|=|
|=1,
∴1=
+
+
•
,
∴
•
=0.
∴
⊥
.
(2)∵
=
+
,
∴
•
=
2+
•
,
∵|
|=|
|=|
|=1,
•
=0,
∴1×1×cosθ=
×12.
∴cosθ=
.
| c |
| 3 |
| 5 |
| a |
| 4 |
| 5 |
| b |
∴
| c |
| 3 |
| 5 |
| a |
| 4 |
| 5 |
| b |
| 9 |
| 25 |
| a |
| 16 |
| 25 |
| b |
| 24 |
| 25 |
| a |
| b |
∵|
| a |
| b |
| c |
∴1=
| 9 |
| 25 |
| 16 |
| 25 |
| 24 |
| 25 |
| a |
| b |
∴
| a |
| b |
∴
| a |
| b |
(2)∵
| c |
| 3 |
| 5 |
| a |
| 4 |
| 5 |
| b |
∴
| a |
| c |
| 3 |
| 5 |
| a |
| 4 |
| 5 |
| a |
| b |
∵|
| a |
| b |
| c |
| a |
| b |
∴1×1×cosθ=
| 3 |
| 5 |
∴cosθ=
| 3 |
| 5 |
点评:本题考查了数量积的运算法则及其性质、向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关题目