题目内容
将函数y=sin(x-
)上各点的纵坐标不变,横坐标伸长位为原来的2倍,然后将图象沿x轴向左平移π个单位,与所得新图象对应的解析式为( )
| π |
| 3 |
A、y=sin(2x+
| ||||
B、y=sin(2x+
| ||||
C、y=sin(
| ||||
D、y=sin(
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据三角函数解析式之间的关系即可得到结论.
解答:
解:将函数y=sin(x-
)上各点的纵坐标不变,横坐标伸长位为原来的2倍,
得到y=sin(
x-
),
然后将图象沿x轴向左平移π个单位得到y=sin[
(x+π)-
]=sin(
x+
),
故选:C
| π |
| 3 |
得到y=sin(
| 1 |
| 2 |
| π |
| 3 |
然后将图象沿x轴向左平移π个单位得到y=sin[
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
故选:C
点评:本题主要考查本题主要考查函数y=Asin(ωx+φ)的图象变换规律,根据三角函数解析式之间的关系是解决本题的关键.
练习册系列答案
相关题目
设方程10-x=|lgx|的两根为x1,x2,则( )
| A、0<x1x2<1 |
| B、x1x2=1 |
| C、-1<x1x2<0 |
| D、1<x1x2<10 |
用秦九韶算法计算f(x)=6x5-4x4+x3-2x2-9x-9,需要加法(或减法)与乘法运算的次数分别为( )
| A、5,4 | B、5,5 |
| C、4,4 | D、4,5 |
函数y=
+sinx的图象大致是( )
| x |
| 3 |
| A、 |
| B、 |
| C、 |
| D、 |
下列表示同一个函数的是( )
A、f(x)=
| ||||
B、f(x)=
| ||||
| C、f(x)=x,g(x)=log22x | ||||
| D、y=2log2x,y=log2x |