题目内容
4.(I)计算这40名广场舞者中年龄分布在[40,70)的人数;
(II)估计这40名广场舞者年龄的众数和中位数;
(III)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者中恰有一人年龄在[30,40)的概率.
分析 (1)由频率分布直方图能求出这40名广场舞者中年龄分布在[40,70)的人数.
(2)由直方图能求出这组数据的众数和中位数.
(3)由直方图可知,年龄在[20,30)有2人,分别记为a1,a2,在[30,40)有4人,分别记为b1,b2,b3,b4,利用列举法能求出从这6人中任选两人,这两名广场舞者中恰有一人年龄在[30,40)的概率.
解答 解:(1)由表中数据知,
这40名广场舞者中年龄分布在[40,70)的人数为(0.02+0.03+0.025)×10×40=30
(2)由直方图可知这组数据的众数为55
因为(0.005+0.01+0.02+0.015)×10=0.5,
故中位数为55.
(3)由直方图可知,年龄在[20,30)有2人,分别记为a1,a2,
在[30,40)有4人,分别记为b1,b2,b3,b4,
现从这6人中任选两人,共有如下15种选法:
(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),
(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),
(b2,b3),(b2,b4),(b3,b4),
其中恰有1人在[30,40)有8种,
故这两名广场舞者中恰有一人年龄在[30,40)的概率为p=$\frac{8}{15}$.
点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
14.若0<α<2π且cosα≤$\frac{1}{2}$,sinα>$\frac{\sqrt{2}}{2}$,则角α的取值范围是( )
| A. | [$\frac{π}{3}$,$\frac{3}{4}$π) | B. | ($\frac{π}{3}$,$\frac{3}{4}$π] | C. | ($\frac{π}{4}$,$\frac{π}{3}$] | D. | [$\frac{π}{3}$,$\frac{3}{4}$π)∪($\frac{π}{4}$,$\frac{π}{3}$) |
12.
根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求频率分布直方图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列.
| 组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
| 第一组 | (0,25] | 3 | 0.15 |
| 第二组 | (25,50] | 12 | 0.6 |
| 第三组 | (50,75] | 3 | 0.15 |
| 第四组 | (75,100] | 2 | 0.1 |
①求频率分布直方图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列.
9.函数$y=2cos({\frac{1}{2}x+\frac{π}{3}})$图象的一个对称中心为( )
| A. | $({\frac{4π}{3},0})$ | B. | $({\frac{π}{2},0})$ | C. | $({\frac{π}{3},0})$ | D. | $({\frac{π}{6},0})$ |
13.
如图,一个几何体的三视图如图所示(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为a的正方形,则其外接球的体积为( )
| A. | $\frac{{\sqrt{3}}}{2}π{a^3}$ | B. | $\frac{{\sqrt{3}}}{2}a$ | C. | $\frac{1}{2}{a^3}$ | D. | $\frac{1}{2}π{a^3}$ |