题目内容
已知sin(
-α)=
,那么cos(
-α)=( )
| π |
| 6 |
| 1 |
| 2 |
| 2π |
| 3 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:由条件利用诱导公式化简可得所给式子的值.
解答:
解:cos(
-α)=cos(
+
-α)=-sin(
-α)=-
,
故选:D.
| 2π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
故选:D.
点评:本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.
练习册系列答案
相关题目
数列{an}的通项公式是关于x的不等式x2-x≤nx(n∈N*)的解集中的整数个数,则数列{
}的前n项和Sn=( )
| 1 |
| anan+1 |
A、
| ||
| B、n(n+1) | ||
C、
| ||
D、
|
已知数列{an}满足a1+2a2+22a3+…+2n-1an=
,则an等于( )
| n |
| 2 |
| A、2n-1 | ||
B、(
| ||
C、(
| ||
| D、2n |
甲、乙2人独立解答某道题,解答正确的概率分别为p1和p2,则甲、乙至少有1人解答正确的概率是( )
| A、p1+p2 |
| B、1-(1-p1)(1-p2) |
| C、1-p1p2 |
| D、p1p2 |
若|
|=1,|
|=2,|
+
|=
,则
与
的夹角θ的余弦值为( )
| a |
| b |
| a |
| b |
| 7 |
| a |
| b |
A、-
| ||
B、
| ||
C、
| ||
| D、以上都不对 |
| A、π | B、2π | C、3π | D、4π |