题目内容
用数学归纳法证明:32n+2-8n-9(n∈N)能被64整除.
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:利用数学归纳法来证明,当n=1时,命题成立,再假设当n=k时,f(k)=32k+2-8k-9能够被64整除,证明当n=k+1时,命题也成立.
解答:
证明:(1)当n=1时,f(1)═34-8-9=64能被64整除,命题成立.
(2)假设当n=k时,f(k)=32k+2-8k-9能够被64整除.
当n=k+1时,f(k+1)=32k+4-8(k+1)-9=9[32k+2-8k-9]+64k+64=9[32k+2-8k-9]+64(k+1)
∵f(k)=32k+2-8k-9能够被64整除,
∴f(k+1)=9[32k+2-8k-9]+64(k+1)能够被64整除.
即当n=k+1时,命题也成立.
由(1)(2)可知,f(n)=32n+2-8n-9(n∈N*)能被64整除,即f(n)=32n+2-8n-9是64的倍数.
(2)假设当n=k时,f(k)=32k+2-8k-9能够被64整除.
当n=k+1时,f(k+1)=32k+4-8(k+1)-9=9[32k+2-8k-9]+64k+64=9[32k+2-8k-9]+64(k+1)
∵f(k)=32k+2-8k-9能够被64整除,
∴f(k+1)=9[32k+2-8k-9]+64(k+1)能够被64整除.
即当n=k+1时,命题也成立.
由(1)(2)可知,f(n)=32n+2-8n-9(n∈N*)能被64整除,即f(n)=32n+2-8n-9是64的倍数.
点评:本题考查数学归纳法的运用,解题的关键正确运用数学归纳法的证题步骤,属于中档题.
练习册系列答案
相关题目
已知f(x)是R上的偶函数,对任意的x1,x2∈[0,+∞)(x1≠x2),有
<0,则f(-2),f(-π),f(3)的大小关系是( )
| f(x2)-f(x1) |
| x2-x1 |
| A、f(-π)>f(-2)>f(3) |
| B、f(3)>f(-π)>f(-2) |
| C、f(-2)>f(3)>f(-π) |
| D、f(-π)>f(3)>f(-2) |
| A、方案A | B、方案B |
| C、两种方案一样优惠 | D、不能确定 |