题目内容
16.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$当1<a<2时,关于x的方程f[f(x)]=a实数解的个数为( )| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 判断f(x)的单调性,做出f(x)的草图,得出f(t)=a的根的情况,再根据方程f(x)=t的根个数,得出结论.
解答
解:函数f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$的图象如下,令f(t)=a,
∵1<a<2,如图所示得,方程f(t)=a有三个根:t1,t2,t3.
且t1<0,${t}_{2}∈({e}^{-2},{e}^{-1})$,${t}_{3}∈(e,{e}^{2})$.
方程f(x)=t1无解,方程f(x)=t2有两个解,方程f(x)=t3无解.
故关于x的方程f[f(x)]=a实数解的个数为2,
故选:A.
点评 本题考查了复合函数根的存在性判断,数形结合思想,属于中档题
练习册系列答案
相关题目
4.已知△ABC中,内角A,B,C的对边分别为a,b,c,b=2,B=45°,若三角形有两解,则a的取值范围是( )
| A. | a>2 | B. | 0<a<2 | C. | 2<a<2$\sqrt{2}$ | D. | 2<a<2$\sqrt{3}$ |
1.若x,y满足$\left\{\begin{array}{l}{y-1≥0}\\{x-y+1≥0}\\{x-1≤0}\end{array}\right.$,则x+y的最小值是( )
| A. | -1 | B. | 1 | C. | 2 | D. | 3 |
5.已知函数f(x)=-x3+ax2-x-2在(-∞,+∞)上是单调函数,则实数a的取值范围是( )
| A. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | B. | (-$\sqrt{3}$,$\sqrt{3}$) | C. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) | D. | [-$\sqrt{3}$,$\sqrt{3}$] |
6.设直线x-y-a=0与圆x2+y2=4相交于A,B两点,O为坐标原点,若△AOB为等边三角形,则实数a的值为( )
| A. | $±\sqrt{3}$ | B. | $±\sqrt{6}$ | C. | ±3 | D. | ±9 |