题目内容
已知数列{an}满足a1=0,a2=2,且对任意m,n∈N*都有a2m+1+a2n-1=2m+n-1+2(m-n)2
(1)设bn=a2n+1-a2n-1(n∈N*)证明:{bn}是等差数列;
(2)设cn=(a2n+1-a2n-1)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.
(1)设bn=a2n+1-a2n-1(n∈N*)证明:{bn}是等差数列;
(2)设cn=(a2n+1-a2n-1)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由题意,令m=2,n=1,得a3=2a2-a1+2=6,令m=3,n=1,得a5=2a3-a1+8=20,由已知得a2n+3+a2n-1=2a2n+1+8,从而bn+1-bn=8,由此能证明{bn}是公差为8的等差数列.
(2)由(1)知{bn}是首项为b1=a3-a1=6,公差为8的等差数列,从而cn=2nqn-1.由此能求出数列{cn}的前n项和Sn.
(2)由(1)知{bn}是首项为b1=a3-a1=6,公差为8的等差数列,从而cn=2nqn-1.由此能求出数列{cn}的前n项和Sn.
解答:
解:(1)由题意,令m=2,n=1,可得a3=2a2-a1+2=6
再令m=3,n=1,可得a5=2a3-a1+8=20…
当n∈N *时,由已知(以n+2代替m)可得
a2n+3+a2n-1=2a2n+1+8
于是[a2(n+1)+1-a2(n+1)-1]-(a2n+1-a2n-1)=8
即bn+1-bn=8
所以{bn}是公差为8的等差数列
(2)由(1)解答可知{bn}是首项为b1=a3-a1=6,公差为8的等差数列
则bn=8n-2,即a2n+1-a2n-1=8n-2
另由已知(令m=1)可得
an=
-(n-1)2.
那么an+1-an=
-2n+1
=
-2n+1=2n,
于是cn=2nqn-1.
当q=1时,Sn=2+4+6+…+2n=n(n+1)
当q≠1时,Sn=2•q0+4•q1+6•q2+…+2n•qn-1.
两边同乘以q,可得
qSn=2•q1+4•q2+6•q3+…+2n•qn.
上述两式相减得
(1-q)Sn=2(1+q+q2+…+qn-1)-2nqn
=2•
-2nqn
=2•
,
∴Sn=2•
,
综上所述,Sn=
.
再令m=3,n=1,可得a5=2a3-a1+8=20…
当n∈N *时,由已知(以n+2代替m)可得
a2n+3+a2n-1=2a2n+1+8
于是[a2(n+1)+1-a2(n+1)-1]-(a2n+1-a2n-1)=8
即bn+1-bn=8
所以{bn}是公差为8的等差数列
(2)由(1)解答可知{bn}是首项为b1=a3-a1=6,公差为8的等差数列
则bn=8n-2,即a2n+1-a2n-1=8n-2
另由已知(令m=1)可得
an=
| a2n+1+a1 |
| 2 |
那么an+1-an=
| a2n+1+a2n-1 |
| 2 |
=
| 8n-2 |
| 2 |
于是cn=2nqn-1.
当q=1时,Sn=2+4+6+…+2n=n(n+1)
当q≠1时,Sn=2•q0+4•q1+6•q2+…+2n•qn-1.
两边同乘以q,可得
qSn=2•q1+4•q2+6•q3+…+2n•qn.
上述两式相减得
(1-q)Sn=2(1+q+q2+…+qn-1)-2nqn
=2•
| 1-qn |
| 1-q |
=2•
| 1-(n+1)qn+nqn+1 |
| 1-q |
∴Sn=2•
| nqn+1-(n+1)qn+1 |
| (q-1)2 |
综上所述,Sn=
|
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关题目
若z=
,则z的共轭复数的虚部为( )
| 1+2i |
| i |
| A、i | B、-i | C、1 | D、-1 |
下列等式中不正确的是( )
A、n!=
| ||||
B、
| ||||
C、
| ||||
D、
|
三名学生到高一年级的四个班就读,每个班至多进一名学生,则不同的进班方式有( )
| A、4种 | ||
B、
| ||
| C、34种 | ||
| D、43种 |