题目内容
3.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知a>b,a=5,c=6,sinB=$\frac{3}{5}$,则sin(A+$\frac{π}{2}$)=( )| A. | $\frac{2\sqrt{13}}{13}$ | B. | $\frac{4}{5}$ | C. | $\frac{\sqrt{13}}{65}$ | D. | $\frac{\sqrt{13}}{13}$ |
分析 由已知结合同角三角函数基本关系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA,进而利用诱导公式,同角三角函数基本关系式即可计算得解.
解答 解:在△ABC中,∵a>b,
∴由sinB=$\frac{3}{5}$,可得cosB=$\frac{4}{5}$.
∴由已知及余弦定理,有b2=a2+c2-2accosB=25+36-2×5×6×$\frac{4}{5}$=13,
∴b=$\sqrt{13}$.由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得sinA=$\frac{asinB}{b}$=$\frac{3\sqrt{13}}{13}$.
∴sin(A+$\frac{π}{2}$)=cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{2\sqrt{13}}{13}$.
故选:A.
点评 本题考查正弦定理和余弦定理在解三角形中的应用,考查诱导公式的应用,属于基础题.
练习册系列答案
相关题目
18.复数$\frac{1}{1+i}-{i}^{2017}$在复平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
8.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-3,x≤0}\\{-2+lnx,x>0}\end{array}\right.$的零点个数为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
1.某市2010年至2016年新开楼盘的平均销售价格y(单位:千元/平米)的统计数据如表:
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式:$\sum_{i=1}^{7}{x}_{i}{y}_{i}=137.2$,$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.
| 年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 销售价格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式:$\sum_{i=1}^{7}{x}_{i}{y}_{i}=137.2$,$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.