题目内容
已知非负实数x、y、z满足x+y+z=3.
(1)求
+
+
的最大值;
(2)求证:
+
+
≤
+
+
.
(1)求
| 2x+1 |
| 2y+1 |
| 2z+1 |
(2)求证:
| x2 |
| 1+x4 |
| y2 |
| 1+y4 |
| z2 |
| 1+z4 |
| 1 |
| 1+x |
| 1 |
| 1+y |
| 1 |
| 1+z |
考点:不等式的证明
专题:证明题
分析:(1)t=
+
+
,则t2=(2x+1)+(2y+1)+(2z+1)+2
•
+2
•
+2
•
,利用基本不等式可求得t2≤27,从而可求得其最大值;
(2)利用基本不等式可证
=
≤
,
=
≤
,
=
≤
,从而可得
+
+
≤
(当且仅当x=y=1时取“=”)①
右端
+
+
=
(
+
+
)展开,重新组合,利用基本不等式可证得
+
+
≥
②,联立①②可证得结论.
| 2x+1 |
| 2y+1 |
| 2z+1 |
| 2x+1 |
| 2y+1 |
| 2x+1 |
| 2z+1 |
| 2y+1 |
| 2z+1 |
(2)利用基本不等式可证
| x2 |
| 1+x4 |
| 1 | ||
x2+
|
| 1 |
| 2 |
| y2 |
| 1+y4 |
| 1 | ||
y2+
|
| 1 |
| 2 |
| z2 |
| 1+z4 |
| 1 | ||
z2+
|
| 1 |
| 2 |
| x2 |
| 1+x4 |
| y2 |
| 1+y4 |
| z2 |
| 1+z4 |
| 3 |
| 2 |
右端
| 1 |
| 1+x |
| 1 |
| 1+y |
| 1 |
| 1+z |
| (1+x)+(1+y)+(1+z) |
| 6 |
| 1 |
| 1+x |
| 1 |
| 1+y |
| 1 |
| 1+z |
| 1 |
| 1+x |
| 1 |
| 1+y |
| 1 |
| 1+z |
| 3 |
| 2 |
解答:
证明:(1)∵x、y、z为非负实数,且满足x+y+z=3,
令t=
+
+
,
则t2=(2x+1)+(2y+1)+(2z+1)+2
•
+2
•
+2
•
,
∵(2x+1)+(2y+1)+(2z+1)=2(x+y+z)+3=9,
2
•
≤(2x+1)+(2y+1),
2
•
≤(2x+1)+(2z+1),
2
•
≤(2y+1)+(2z+1),
∴t2≤9+2[(2x+1)+(2y+1)+(2z+1)]=9+18=27(当且仅当x=y=z=1时取“=”),
∴t≤3
,即
+
+
的最大值为3
;
(2)∵
=
≤
,
=
≤
,
=
≤
,
∴
+
+
≤
(当且仅当x=y=z=1时取“=”)①
又x+y+z=3,x、y、z为非负实数,
∴
+
+
=
(
+
+
)
=
(1+
+
+1+
+
+1+
+
)
=
[3+(
+
)+(
+
)+(
+
)]
≥
(3+2+2+2)=
.②
由①②得:
+
+
≤
+
+
.
令t=
| 2x+1 |
| 2y+1 |
| 2z+1 |
则t2=(2x+1)+(2y+1)+(2z+1)+2
| 2x+1 |
| 2y+1 |
| 2x+1 |
| 2z+1 |
| 2y+1 |
| 2z+1 |
∵(2x+1)+(2y+1)+(2z+1)=2(x+y+z)+3=9,
2
| 2x+1 |
| 2y+1 |
2
| 2x+1 |
| 2z+1 |
2
| 2y+1 |
| 2z+1 |
∴t2≤9+2[(2x+1)+(2y+1)+(2z+1)]=9+18=27(当且仅当x=y=z=1时取“=”),
∴t≤3
| 3 |
| 2x+1 |
| 2y+1 |
| 2z+1 |
| 3 |
(2)∵
| x2 |
| 1+x4 |
| 1 | ||
x2+
|
| 1 |
| 2 |
| y2 |
| 1+y4 |
| 1 | ||
y2+
|
| 1 |
| 2 |
| z2 |
| 1+z4 |
| 1 | ||
z2+
|
| 1 |
| 2 |
∴
| x2 |
| 1+x4 |
| y2 |
| 1+y4 |
| z2 |
| 1+z4 |
| 3 |
| 2 |
又x+y+z=3,x、y、z为非负实数,
∴
| 1 |
| 1+x |
| 1 |
| 1+y |
| 1 |
| 1+z |
| (1+x)+(1+y)+(1+z) |
| 6 |
| 1 |
| 1+x |
| 1 |
| 1+y |
| 1 |
| 1+z |
=
| 1 |
| 6 |
| 1+y |
| 1+x |
| 1+z |
| 1+x |
| 1+x |
| 1+y |
| 1+z |
| 1+y |
| 1+x |
| 1+z |
| 1+y |
| 1+z |
=
| 1 |
| 6 |
| 1+y |
| 1+x |
| 1+x |
| 1+y |
| 1+z |
| 1+y |
| 1+y |
| 1+z |
| 1+z |
| 1+x |
| 1+x |
| 1+z |
≥
| 1 |
| 6 |
| 3 |
| 2 |
由①②得:
| x2 |
| 1+x4 |
| y2 |
| 1+y4 |
| z2 |
| 1+z4 |
| 1 |
| 1+x |
| 1 |
| 1+y |
| 1 |
| 1+z |
点评:本题考查不等式的证明,着重考查基本不等式的应用,考查等价转化思想与创新思维、逻辑思维能力,属于难题.
练习册系列答案
相关题目
执行如图所示的程序框图,输出的S值为( )

| A、9 | B、19 | C、20 | D、35 |