题目内容
13.已知曲线C的方程为$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,则曲线C的离心率$\frac{1}{2}$.分析 根据题意,对曲线方程变形可得$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,分析可得曲线C为椭圆,计算可得c的值,由椭圆的离心率公式计算可得答案.
解答 解:根据题意,曲线C的方程为$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,
变形可得$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,
则曲线C为椭圆,其中a=2,b=$\sqrt{3}$,
则c=$\sqrt{4-3}$=1,
其离心率e=$\frac{c}{a}$=$\frac{1}{2}$;
故答案为:$\frac{1}{2}$.
点评 本题考查曲线与方程,涉及椭圆的几何性质,关键化简变形方程,得到曲线的标准方程.
练习册系列答案
相关题目
8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线l:x-y+2=0平行,则双曲线C的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{10}$ |
18.在平行四边形ABCD中,$|{\overrightarrow{AD}}|=3,|{\overrightarrow{AB}}|=5,\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AD},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC},cosA=\frac{3}{5}$,则$|{\overrightarrow{EF}}$|=( )
| A. | $\sqrt{14}$ | B. | $2\sqrt{5}$ | C. | $4\sqrt{2}$ | D. | $2\sqrt{11}$ |
5.已知点F2,P分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点与右支上的一点,O为坐标原点,若点M是PF2的中点,$|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,则该双曲线的离心率为( )
| A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
3.将函数f(x)=cos2x图象上所有点向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,若g(x)在区间[0,a]上单调递增,则实数a的最大值为( )
| A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3}{4}π$ |