题目内容
20.函数y=g(x)的图象是由函数f(x)=sin2x-$\sqrt{3}$cos2x的图象向左平移$\frac{π}{6}$个单位而得到的,则函数y=g(x)的图象与直线x=0,x=$\frac{2π}{3}$,x轴围成的封闭图形的面积为( )| A. | 0 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
分析 先根据两角和差的正弦公式,化简f(x),再根据图象的平移求出g(x),最后根据定积分计算即可.
解答 解:∵f(x)=sin2x-$\sqrt{3}$cos2x=2sin(2x-$\frac{π}{3}$),
又y=g(x)的图象是由函数f(x)=sin2x-$\sqrt{3}$cos2x的图象向左平移$\frac{π}{6}$个单位而得到的,
∴g(x)=2sin[2(x+$\frac{π}{6}$)-$\frac{π}{3}$]=2sin2x,
∴函数y=g(x)的图象与直线x=0,x=$\frac{2π}{3}$,x轴围成的封闭图形的面积S=${∫}_{0}^{\frac{2π}{3}}$2sin2xdx=-cos2x|${\;}_{0}^{\frac{2π}{3}}$=-(cos$\frac{2π}{3}$-cos0)=$\frac{3}{2}$,
故选:B.
点评 本题主要考查两角和差的正弦公式的应用,函数y=Asin(ωx+∅)的图象变换规律,以及定积分在几何中的应用,属于中档题.
练习册系列答案
相关题目
12.设集合A={-2,-1,0,1,2},集合B={x∈Z|x2-x-2≥0},则A∩∁ZB=( )
| A. | {-2,-1,0,1,2} | B. | [-2,2] | C. | [0,1] | D. | {0,1} |
10.命题p:若2x≥2y,则1gx≥1gy;
命题q:若随机变量ξ服从正态分布N(3,σ2),P(ξ≤6)=0.72,则P(ξ≤0)=0.28.
下列命题为真命题的是( )
命题q:若随机变量ξ服从正态分布N(3,σ2),P(ξ≤6)=0.72,则P(ξ≤0)=0.28.
下列命题为真命题的是( )
| A. | p∧q | B. | ¬p∧q | C. | p∨¬q | D. | ¬p∧¬q |