题目内容
12.设集合A={-2,-1,0,1,2},集合B={x∈Z|x2-x-2≥0},则A∩∁ZB=( )| A. | {-2,-1,0,1,2} | B. | [-2,2] | C. | [0,1] | D. | {0,1} |
分析 求出集合B,从而求出∁ZB,进而求出其和A的交集即可.
解答 解:∵集合A={-2,-1,0,1,2},
集合B={x∈Z|x2-x-2≥0}={x|x≥2或x≤-1},
∴∁ZB={0,1},
∴A∩∁ZB={0,1}.
故选:D.
点评 本题考查了集合的运算性质,考查不等式问题,是一道基础题.
练习册系列答案
相关题目
20.函数y=g(x)的图象是由函数f(x)=sin2x-$\sqrt{3}$cos2x的图象向左平移$\frac{π}{6}$个单位而得到的,则函数y=g(x)的图象与直线x=0,x=$\frac{2π}{3}$,x轴围成的封闭图形的面积为( )
| A. | 0 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |