题目内容
设f(x)=6cos2x-
sin2x.
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)△ABC中锐角A满足f(A)=3-2
,B=
,角A、B、C的对边分别为a,b,c,求(
+
)-
的值.
| 3 |
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)△ABC中锐角A满足f(A)=3-2
| 3 |
| π |
| 12 |
| a |
| b |
| b |
| a |
| c2 |
| ab |
(Ⅰ)f(x)=6cos2x-
sin2x
=6×
-
sin2x
=3cos2x-
sin2x+3
=2
(
cos2x-
sin2x)+3
=2
cos(2x+
)+3,
∵-1≤cos(2x+
)≤1,
∴f(x)的最大值为2
+3;
又ω=2,∴最小正周期T=
=π;
(Ⅱ)由f(A)=3-2
得:2
cos(2A+
)+3=3-2
,
∴cos(2A+
)=-1,
又0<A<
,∴
<2A+
<
,
∴2A+
=π,即A=
,
又B=
,∴C=
,
∴cosC=
=0,
则(
+
)-
=
=2×
=2cosC=0.
| 3 |
=6×
| 1+cos2x |
| 2 |
| 3 |
=3cos2x-
| 3 |
=2
| 3 |
| ||
| 2 |
| 1 |
| 2 |
=2
| 3 |
| π |
| 6 |
∵-1≤cos(2x+
| π |
| 6 |
∴f(x)的最大值为2
| 3 |
又ω=2,∴最小正周期T=
| 2π |
| 2 |
(Ⅱ)由f(A)=3-2
| 3 |
| 3 |
| π |
| 6 |
| 3 |
∴cos(2A+
| π |
| 6 |
又0<A<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴2A+
| π |
| 6 |
| 5 |
| 12 |
又B=
| π |
| 12 |
| π |
| 2 |
∴cosC=
| a2+b2-c2 |
| 2ab |
则(
| a |
| b |
| b |
| a |
| c2 |
| ab |
| a2+b2-c2 |
| ab |
| a2+b2-c2 |
| 2ab |
练习册系列答案
相关题目