题目内容
设f(x)=6cos2x-| 3 |
(1)求f(x)的最大值及最小正周期;
(2)若锐角α满足f(α)=3-2
| 3 |
| 4 |
| 5 |
分析:(I)利用三角函数的二倍角公式及公式asinx+bcosx=
sin(x+θ)化简为只含一个角一个函数名的三角函数,利用有界性及周期公式求出最大值最小正周期.
(II)列出关于α的三角方程,求出α,求出正切值.
| a2+b2 |
(II)列出关于α的三角方程,求出α,求出正切值.
解答:解:(Ⅰ)f(x)=6
-
sin2x
=3cos2x-
sin2x+3
=2
(
cos2x-
sin2x)+3
=2
cos(2x+
)+3
故f(x)的最大值为2
+3;最小正周期T=
=π
(Ⅱ)由f(α)=3-2
得2
cos(2α+
)+3=3-2
,故cos(2α+
)=-1
又由0<α<
得
<2α+
<π+
,故2α+
=π,解得α=
π.
从而tan
α=tan
=
.
| 1+cos2x |
| 2 |
| 3 |
=3cos2x-
| 3 |
=2
| 3 |
| ||
| 2 |
| 1 |
| 2 |
=2
| 3 |
| π |
| 6 |
故f(x)的最大值为2
| 3 |
| 2π |
| 2 |
(Ⅱ)由f(α)=3-2
| 3 |
| 3 |
| π |
| 6 |
| 3 |
| π |
| 6 |
又由0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 5 |
| 12 |
从而tan
| 4 |
| 5 |
| π |
| 3 |
| 3 |
点评:本题考查三角函数的二倍角公式、公式asinx+bcosx=
sin(x+θ)、三角函数的周期公式、解三角方程.
| a2+b2 |
练习册系列答案
相关题目