题目内容

设实数x,y满足约束条件:
x≥2
y≥x
2x+y≤12
,则z=x2+y2的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合,即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:作出不等式组对应的平面区域如图:
则z=x2+y2的几何意义为动点P(x,y)到原点距离的平方的最大值,
由图象可知当P位于点A时,距离最大,
x=2
2x+y=12
,解得
x=2
y=8

此时zmax=x2+y2=22+82=68.
故答案为:68
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网