题目内容

10.已知数列{an}的前n项和为Sn,且满足Sn=an+n2-1(n∈N*).
(1)求{an}的通项公式;
(2)求证:$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}<\frac{3}{4}$.

分析 (1)Sn=an+n2-1(n∈N*),可得a1+a2=a2+22-1,解得a1.n≥2时,an=Sn-Sn-1
(2)由(1)可得:Sn=n2+2n.可得$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.利用“裂项求和”方法即可得出.

解答 (1)解:∵Sn=an+n2-1(n∈N*),∴a1+a2=a2+22-1,解得a1=3.
n≥2时,an=Sn-Sn-1=an+n2-1-[an-1+(n-1)2-1],化为:an-1=2n-1,可得an=2n+1,n=1时也成立.
∴an=2n+1.
(2)证明:由(1)可得:Sn=2n+1+n2-1=n2+2n.
∴$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$<$\frac{3}{4}$.

点评 本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与就计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网