题目内容
3.已知2a>2b>1,则下列不等关系式中一定正确的是( )| A. | sinα>sinb | B. | log2a<log2b | C. | a3<b3 | D. | ($\frac{1}{2}$)a<($\frac{1}{2}$)b |
分析 利用指数函数的单调性即可得出.
解答 解:∵2a>2b>1,则a>b>0.
∴$(\frac{1}{2})^{a}<(\frac{1}{2})^{b}$,
故选:D.
点评 本题考查了指数函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
13.设a∈R,“a>1”是“方程x2+2ax+y2+1=0的曲线是圆”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
11.下列说法正确的是( )
| A. | 0∉N | B. | $\sqrt{2}$∈Q | C. | π∉R | D. | $\sqrt{4}$∈Z |
18.已知函数f(x+1)=2x-1,则f(x)的解析式为( )
| A. | f(x)=3-2x | B. | f(x)=2x-3 | C. | f(x)=3x-2 | D. | f(x)=3x |
4.某地区在对人们休闲方式的一次调查中,共调查了120人,其中女性70人,男性50人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)能否在犯错误的概率不超过0.025的前提下认为“性别与休闲方式有关系”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)根据以上数据建立一个2×2列联表;
(2)能否在犯错误的概率不超过0.025的前提下认为“性别与休闲方式有关系”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |