ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÃüÌâ?x2£¾1£¬x£¾1µÄ·ñ¶¨ÊÇ?x2¡Ü1£¬x¡Ü1£»
¢Úº¯Êýf(x)=
(a£¾0ÇÒa¡Ù1)ÔÚRÉϵ¥µ÷µÝ¼õ£»
¢ÛÉèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨x£©+f£¨-x£©ÊÇżº¯Êý£»
¢Ü¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©¶ÔÓÚÈÎÒâxµÄ¶¼ÓÐf(x-2)=-
£¬Ôòf£¨x£©ÎªÖÜÆÚº¯Êý£»
¢ÝÒÑÖªÃݺ¯Êýf£¨x£©=x¦ÁµÄͼÏó¾¹ýµã(2£¬
)£¬Ôòf£¨4£©µÄÖµµÈÓÚ
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ £¨°ÑËùÓÐÕæÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©£®
¢ÙÃüÌâ?x2£¾1£¬x£¾1µÄ·ñ¶¨ÊÇ?x2¡Ü1£¬x¡Ü1£»
¢Úº¯Êýf(x)=
| ax-1 |
| ax+1 |
¢ÛÉèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨x£©+f£¨-x£©ÊÇżº¯Êý£»
¢Ü¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©¶ÔÓÚÈÎÒâxµÄ¶¼ÓÐf(x-2)=-
| 4 |
| f(x) |
¢ÝÒÑÖªÃݺ¯Êýf£¨x£©=x¦ÁµÄͼÏó¾¹ýµã(2£¬
| ||
| 2 |
| 1 |
| 2 |
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼
·ÖÎö£º¢Ùд³öÃüÌâ?x2£¾1£¬x£¾1µÄ·ñ¶¨£¬¿ÉÅжϢ٣»
¢ÚÓÉÓÚº¯Êýf£¨x£©=
=1-
£¬·Ö0£¼a£¼1Óëa£¾1Á½ÖÖÇé¿öÌÖÂÛ£¬¿ÉÖª¸Ãº¯ÊýµÄµ¥µ÷Çé¿ö£¬´Ó¶ø¿ÉÅжϢڣ»
¢ÛÉèÁîh£¨x£©=f£¨x£©+f£¨-x£©£¬ÀûÓÃÆæÅ¼º¯ÊýµÄ¸ÅÄî¿ÉÅжϢۣ»
¢ÜÓÉf(x-2)=-
⇒f[£¨x-2£©-2]=-
=f£¨x£©£¬¿ÉÅжϢܣ»
¢ÝÒÑÖªÃݺ¯Êýf£¨x£©=x¦ÁµÄͼÏó¾¹ýµã(2£¬
)£¬¿ÉÇóµÃf£¨x£©=2-
£¬´Ó¶ø¿ÉÇóf£¨4£©µÄÖµ£¬¿ÉÅжϢݣ®
¢ÚÓÉÓÚº¯Êýf£¨x£©=
| ax-1 |
| ax+1 |
| 2 |
| ax+1 |
¢ÛÉèÁîh£¨x£©=f£¨x£©+f£¨-x£©£¬ÀûÓÃÆæÅ¼º¯ÊýµÄ¸ÅÄî¿ÉÅжϢۣ»
¢ÜÓÉf(x-2)=-
| 4 |
| f(x) |
| 4 |
| f(x-2) |
¢ÝÒÑÖªÃݺ¯Êýf£¨x£©=x¦ÁµÄͼÏó¾¹ýµã(2£¬
| ||
| 2 |
| 1 |
| 2 |
½â´ð£º
-x½â£º¶ÔÓÚ¢Ù£¬ÃüÌâ?x2£¾1£¬x£¾1µÄ·ñ¶¨ÊÇ?x2£¾1£¬x¡Ü1£¬¹Ê¢Ù´íÎó£»
¶ÔÓÚ¢Ú£¬º¯Êýf£¨x£©=
=1-
£¬
µ±0£¼a£¼1ʱ£¬y=ax+1ÊǼõº¯Êý£¬y=
ΪÔöº¯Êý£¬¹Êf£¨x£©=
=1-
Ϊ¼õº¯Êý£»
µ±a£¾1ʱ£¬y=ax+1ÊÇÔöº¯Êý£¬Í¬Àí¿ÉµÃf£¨x£©=
=1-
ΪÔöº¯Êý£¬¹Ê¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬Éèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Áîh£¨x£©=f£¨x£©+f£¨-x£©£¬
Ôòh£¨-x£©=f£¨-x£©+f£¨x£©=h£¨x£©£¬
ËùÒÔf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©¶ÔÓÚÈÎÒâxµÄ¶¼ÓÐf(x-2)=-
£¬Ôòf[£¨x-2£©-2]=-
=f£¨x£©£¬
ËùÒÔf£¨x£©ÊÇÒÔ4ΪÖÜÆÚº¯Êý£¬¹Ê¢ÜÕýÈ·£»
¶ÔÓڢݣ¬ÒÑÖªÃݺ¯Êýf£¨x£©=x¦ÁµÄͼÏó¾¹ýµã(2£¬
)£¬Ôò
=2¦Á£¬½âµÃ¦Á=-
£¬
ËùÒÔf£¨4£©=4-
=
£¬¹Ê¢ÝÕýÈ·£»
×ÛÉÏËùÊö£¬¢Û¢Ü¢ÝÕýÈ·£»
¹Ê´ð°¸Îª£º¢Û¢Ü¢Ý£®
¶ÔÓÚ¢Ú£¬º¯Êýf£¨x£©=
| ax-1 |
| ax+1 |
| 2 |
| ax+1 |
µ±0£¼a£¼1ʱ£¬y=ax+1ÊǼõº¯Êý£¬y=
| 2 |
| ax+1 |
| ax-1 |
| ax+1 |
| 2 |
| ax+1 |
µ±a£¾1ʱ£¬y=ax+1ÊÇÔöº¯Êý£¬Í¬Àí¿ÉµÃf£¨x£©=
| ax-1 |
| ax+1 |
| 2 |
| ax+1 |
¶ÔÓÚ¢Û£¬Éèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Áîh£¨x£©=f£¨x£©+f£¨-x£©£¬
Ôòh£¨-x£©=f£¨-x£©+f£¨x£©=h£¨x£©£¬
ËùÒÔf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©¶ÔÓÚÈÎÒâxµÄ¶¼ÓÐf(x-2)=-
| 4 |
| f(x) |
| 4 |
| f(x-2) |
ËùÒÔf£¨x£©ÊÇÒÔ4ΪÖÜÆÚº¯Êý£¬¹Ê¢ÜÕýÈ·£»
¶ÔÓڢݣ¬ÒÑÖªÃݺ¯Êýf£¨x£©=x¦ÁµÄͼÏó¾¹ýµã(2£¬
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
ËùÒÔf£¨4£©=4-
| 1 |
| 2 |
| 1 |
| 2 |
×ÛÉÏËùÊö£¬¢Û¢Ü¢ÝÕýÈ·£»
¹Ê´ð°¸Îª£º¢Û¢Ü¢Ý£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Óã¬×ۺϿ¼²éº¯ÊýµÄÆæÅ¼ÐÔ¡¢µ¥µ÷ÐÔ¡¢ÖÜÆÚÐÔ£¬¿¼²éÃüÌâµÄ·ñ¶¨¼°Ãݺ¯ÊýµÄÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁÐÐðÊöÖдíÎóµÄÊÇ£¨¡¡¡¡£©
| A¡¢A¡Êl£¬A¡Ê¦Á£¬B¡Êl£¬B¡Êa⇒l?¦Á |
| B¡¢ÌÝÐÎÒ»¶¨ÊÇÆ½ÃæÍ¼ÐÎ |
| C¡¢¿Õ¼äÖÐÈýµãÄÜÈ·¶¨Ò»¸öÆ½Ãæ |
| D¡¢A¡Ê¦Á£¬A¡Ê¦Â£¬B¡Ê¦Á£¬B¡Ê¦Â⇒¦Á¡É¦Â=AB |