题目内容
8.已知矩阵A=$[\begin{array}{l}{1}&{b}\\{-1}&{a}\end{array}]$(a,b∈R),若点P(1,1)在矩阵A对应的变换作用下得到点P′(-1,1).(1)求实数a,b的值;
(2)求矩阵A的特征值.
分析 (1)由题意可知:$[\begin{array}{l}{1}&{b}\\{-1}&{a}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{1}\end{array}]$,即$\left\{\begin{array}{l}{1+b=-1}\\{-1+a=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=2}\\{b=-2}\end{array}\right.$,即可求得实数a,b的值;
(2)由(1)可知:A=$[\begin{array}{l}{1}&{-2}\\{-1}&{2}\end{array}]$,f(λ)=λE-A=$|\begin{array}{l}{λ-1}&{2}\\{1}&{λ-2}\end{array}|$=λ(λ-3),f(λ)=0,解得:λ=0或λ=3,即可求得矩阵A的特征值,代入即可求得特征向量.
解答 解:(1)由题意可知:$[\begin{array}{l}{1}&{b}\\{-1}&{a}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{1}\end{array}]$,即$\left\{\begin{array}{l}{1+b=-1}\\{-1+a=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2}\\{b=-2}\end{array}\right.$,
∴A=$[\begin{array}{l}{1}&{-2}\\{-1}&{2}\end{array}]$,
(2)由(1)可知:A=$[\begin{array}{l}{1}&{-2}\\{-1}&{2}\end{array}]$,
特征多项式f(λ)=λE-A=$|\begin{array}{l}{λ-1}&{2}\\{1}&{λ-2}\end{array}|$=λ(λ-3),
令f(λ)=0,解得:λ=0或λ=3,
∴特征值λ1=3,λ2=0,
当λ1=3时,齐次线性方程组(λE-A)X=0,
$\left\{\begin{array}{l}{2{x}_{1}+2{x}_{2}=0}\\{{x}_{1}+{x}_{2}=0}\end{array}\right.$,解得:x1=-x2,令x2=1,
∴其基础解系为$\overrightarrow{{ξ}_{1}}$=$(\begin{array}{l}{-1}\\{1}\end{array})$,
属于λ1=3的全部特征向量为:k1$\overrightarrow{{ξ}_{1}}$(k1≠0),
当λ2=0时,齐次线性方程组(λE-A)X=0,
即$\left\{\begin{array}{l}{{x}_{1}-2{x}_{2}=0}\\{{-{x}_{1}+x}_{2}=0}\end{array}\right.$,解得:x1=2x2,令x2=1,
∴其基础解系为ξ2=$(\begin{array}{l}{2}\\{1}\end{array})$,
属于λ2=0的全部特征向量为:k2$\overrightarrow{{ξ}_{2}}$(k2≠0).
点评 本题主要考查矩阵变换的应用,考查了二阶矩阵,以及特征值与特征向量的计算,属于中档题.
| X | 0 | 1 |
| p | 0.3 | 0.7 |
| A. | a=10,b=3 | B. | a=3,b=10 | C. | a=100,b=-60 | D. | a=60,b=-100 |
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
| A. | 归纳推理,类比推理 | B. | 演绎推理,类比推理 | ||
| C. | 类比推理,演绎推理 | D. | 归纳推理,演绎推理 |
| A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{26}{27}$ |