题目内容
17.①设数列{an}的前n项和为Sn,由an=2n-1,求出S${\;}_{1}={1}^{2}$,S${\;}_{2}={2}^{2}$,S${\;}_{3}={3}^{2}$,…,推断:S${\;}_{n}={n}^{2}$;②由圆x2+y2=r2的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab.则①②两个推理依次是( )| A. | 归纳推理,类比推理 | B. | 演绎推理,类比推理 | ||
| C. | 类比推理,演绎推理 | D. | 归纳推理,演绎推理 |
分析 根据归纳推理是由特殊到一般,类比推理是根据对象的相似性,推导结论,由此可得结论.
解答 解:对于①,由an=2n-1,求出S1=12,S2=22,S3=32,…,推断:数列{an}的前n项和,是由特殊推导出一般性的结论,属于归纳推理,
对于②,是由圆类比椭圆,由圆的面积类比椭圆的面积,故属于类比推理,
故选:A.
点评 本题考查归纳推理、类比推理,考查学生分析解决问题的能力,考查学生的探究能力.
练习册系列答案
相关题目
11.
过椭圆C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}+\frac{{y_{\;}^2}}{{b_{\;}^2}}=1$(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B.且点B在x轴上射影恰好为右焦点F,若$\frac{1}{6}<|k|<\frac{1}{3}$,则椭圆C的离心率取值范围是( )
| A. | ($\frac{2}{3},\frac{5}{6}$) | B. | ($\frac{2}{3}$,1) | C. | ($\frac{1}{4},\frac{3}{4}$) | D. | ($\frac{1}{4},\frac{5}{4}$) |
2.设△ABC的三个内角为A,B,C,向量$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),若$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),则C等于( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
9.已知函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,则实数a的最大值为( )
| A. | 1 | B. | 2 | C. | e2 | D. | 2e2 |
6.已知函数f(x)满足f(-x)=f(x),f(x+1)=-$\frac{1}{f(x)}$,且当x∈[-1,0]时,f(x)=|x|.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是( )
| A. | $({0,\;\frac{1}{2}}]$ | B. | $({0,\;\frac{1}{3}}]$ | C. | $({0,\;\frac{1}{4}}]$ | D. | $[{\frac{1}{4},\;\;\frac{1}{3}}]$ |
7.下列函数中,对定义域中的任一实数x均满足f($\sqrt{2}x$)=2f(x)的是( )
| A. | f(x)=log2x | B. | f(x)=x|x| | C. | f(x)=x2+1 | D. | f(x)=2x |