题目内容
7.圆x2+y2=1与直线xsinθ+y-1=0的位置关系为( )| A. | 相交 | B. | 相切 | C. | 相离 | D. | 相切或相交 |
分析 求出圆心坐标和半径r,求出直线系经过的定点,判断定点与圆的位置关系,可得出直线与圆位置关系.
解答 解:由圆的标准方程:x2+y2=1,
∴圆心坐标为(0,0),半径r=1,
∵直线xsinα+y-1=0,恒过(0,1),而(0,1)是圆周上的点.
∴直线与圆的位置关系是相交或相切.
故选D.
点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,以及正弦函数的值域,直线与圆的位置关系由d与r的大小关系确定(d表示圆心到直线的距离,r表示圆的半径),当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.本题是直线系与圆的位置关系,转化为点与圆的位置关系判断.
练习册系列答案
相关题目
18.对于平面α和两条不同的直线m、n,下列命题是真命题的是( )
| A. | 若m,n与α所成的角相等,则m∥n | B. | 若m∥α,n∥α,则m∥n | ||
| C. | 若m⊥α,m⊥n,则n∥α | D. | 若m⊥α,n⊥α,则m∥n |
15.设等比数列{an}的公比为q,前n项和为Sn,且a1>0,若S2>2a3,则q的取值范围是( )
| A. | $(-1,0)∪(0,\frac{1}{2})$ | B. | $(-\frac{1}{2},0)∪(0,1)$ | C. | $(-1,\frac{1}{2})$ | D. | $(-\frac{1}{2},1)$ |
2.在△ABC中,AB=BC=3,∠BAC=30°,CD是AB边上的高,则$\overrightarrow{CD}•\overrightarrow{CB}$=( )
| A. | $-\frac{9}{4}$ | B. | $\frac{9}{4}$ | C. | $\frac{27}{4}$ | D. | $-\frac{27}{4}$ |
12.30岁以后,随着年龄的增长,人们的身体机能在逐渐退化,所以打针 买保健品这样的“健康消费”会越来越多,现对某地区不同年龄段的一些人进行了调查,得到其一年内平均“健康消费”如表:
(1)求“健康消费”y关于年龄x的线性回归方程;
(2)由(1)所得方程,估计该地区的人在60岁时的平均“健康消费”.
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)
| 年龄(岁) | 30 | 35 | 40 | 45 | 50 |
| 健康消费(百元) | 5 | 8 | 10 | 14 | 18 |
(2)由(1)所得方程,估计该地区的人在60岁时的平均“健康消费”.
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)