题目内容

设数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn,b1=
2
3
且3Sn=Sn-1+2(n≥2,n∈N).
(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,求数列{cn}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列的性质,求出首项和公差,由此能求出an=3n-1.由3Sn=Sn-1+2(n≥2,n∈N),得3Sn=Sn-bn+2,即bn=2-2Sn,由此能求出bn=2•
1
3n

(Ⅱ)由cn=an•bn=2(3n-1)•
1
3n
,利用错位相减法能求出数列{cn}的前n项和Tn
解答: 解:(Ⅰ)∵数列{an}为等差数列,且a5=14,a7=20,公差d=
1
2
(a7-a5)=3,
∴a1+4×3=14,解得a1=2,
∴an=2+(n-1)×3=3n-1.
由3Sn=Sn-1+2(n≥2,n∈N),得3Sn=Sn-bn+2,即bn=2-2Sn
∴b2=2-(b1+b2),又b1=
2
3
,∴b2=
2
9
b2
b1
=
2
9
2
3
=
1
3

由3Sn=Sn-1+2,当n≥3时,得3Sn-1=Sn-2+2,
两式相减得:3(Sn-Sn-1)=Sn-1-Sn-2,即3bn=bn-1
bn
bn-1
=
1
3
(n≥3)
b2
b1
=
1
3
,∴{bn}是以b1=
2
3
为首项,
1
3
为公比的等比数列,于是bn=2•
1
3n

(Ⅱ)cn=an•bn=2(3n-1)•
1
3n

∴Tn=2[2×
1
3
+5×
1
32
+8×
1
33
+…+(3n-1)×
1
3n
],
1
3
Tn=2[2×
1
32
+5×
1
33
+…+(3n-4)×
1
3n
+(3n-1)×
1
3n+1
],
两式相减得
2
3
Tn=2[3×
1
3
+3×
1
32
+3×
1
33
+…+3×
1
3n
-
1
3
-(3n-1)×
1
3n+1
]
=2[1+
1
3
+
1
32
+
1
33
+…+
1
3n-1
-
1
3
-(3n-1)×
1
3n+1
]
=2×
1-
1
3n
1-
1
3
-2×
1
3
-(3n-1)×
1
3n+1

=
7
3
-
3
3n
-
3n-1
3n+1

∴Tn=
7
2
-
n+9
3n
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网