题目内容

5.设点M(x0,1),设在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则实数x0的取值范围为$[-\sqrt{3},\sqrt{3}]$.

分析 易知M点在直线y=1上,若设圆x2+y2=1与直线y=1的交点为T,显然假设存在点N,使得∠OMN=30°,则必有∠OMN≤∠OMT,所以只需∠OMT≥30°即可,借助于三角函数容易求出x0的范围.

解答 解:易知M(x0,1)在直线y=1上,设圆x2+y2=1与直线y=1的交点为T,显然假设存在点N,使得∠OMN=30°,则必有∠OMN≤∠OMT,
所以要是圆上存在点N,使得∠OMN=30°,只需∠OMT≥30°,
因为T(0,1),所以只需在Rt△OMT中,tan∠OMT=$\frac{1}{|{x}_{0}|}$≥tan30°=$\frac{1}{\sqrt{3}}$,
当x0=0时,显然满足题意,
故x0∈$[-\sqrt{3},\sqrt{3}]$.
故答案为$[-\sqrt{3},\sqrt{3}]$.

点评 此题重点考查了利用数形结合的思想方法解题,关键是弄清楚M点所在的位置,能够找到∠OMN与∠OMT的大小关系,从而构造出关于x0的不等式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网