题目内容

已知函数f(x)=x3-ax2-3x
(Ⅰ)已知a=6,且g(x)=f(x)-f′(x)+3x2,求g(x)的单调区间;
(Ⅱ)若函数f(x)在[1+
2
,+∞)是增函数,导函数f′(x)在(-∞,1]上是减函数,求a的值.
考点:利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:(Ⅰ)g(x)=f(x)-f′(x)+3x2=x3-6x2+9x+3,g′(x)=3x2-12x+9=3(x-1)(x-3);从而确定函数的单调区间;
(Ⅱ)f′(x)=3x2-2ax-3;则f(x)在[1+
2
,+∞)上是增函数可化为f′(x)≥0在[1+
2
,+∞)恒成立,从而求解.
解答: 解:(Ⅰ)当a=6时,
g(x)=f(x)-f′(x)+3x2=x3-6x2+9x+3,
故g′(x)=3x2-12x+9=3(x-1)(x-3);
列表:
x(-∞,1)1(1,3)3(3,+∞)
g′(x)+0-0+
g(x)增函数减函数增函数
∴增区间为:(-∞,1),(3,+∞); 减区间为:(1,3);
(Ⅱ)f′(x)=3x2-2ax-3;
∵f(x)在[1+
2
,+∞)上是增函数,
∴f′(x)≥0在[1+
2
,+∞)恒成立,
即a≤
3x2-3
2x
在[1+
2
,+∞)恒成立,
a≤(
3x2-3
2x
min=3;
又∵f′(x)在(-∞,1]上是减函数,
a
3
≥1,
∴a≥3;
故a=3.
点评:本题考查了导数的综合应用及恒成立问题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网