题目内容
已知数列{an}的前n项和Sn满足:Sn=Sn-1+an-1+2n(n≥2,n∈N),且首项a1=1
(1)求数列{an}的通项公式;
(2)令bn=
,证明:对一切正整数n,有b1+b2+…bn<1.
(1)求数列{an}的通项公式;
(2)令bn=
| 2n |
| anan+1 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an=Sn-Sn-1=an-1+2n,n≥2,a1=1,由此利用累加法能求出数列{an}的通项公式.
(2)由bn=
=
=
-
,利用裂项求和法能证明对一切正整数n,有b1+b2+…bn<1.
(2)由bn=
| 2n |
| anan+1 |
| 2n |
| (2n-1)(2n+1-1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
解答:
(1)解:∵Sn=Sn-1+an-1+2n(n≥2,n∈N),
∴an=Sn-Sn-1=an-1+2n,n≥2,
又∵a1=1,
∴an=a1+a2-a1+a3-a2+…+an-an-1
=1+2+22+…+2n-1
=
=2n-1.
(2)证明:∵bn=
=
=
-
,
∴b1+b2+…bn=1-
+
-
+…+
-
=1-
<1,
∴对一切正整数n,有b1+b2+…bn<1.
∴an=Sn-Sn-1=an-1+2n,n≥2,
又∵a1=1,
∴an=a1+a2-a1+a3-a2+…+an-an-1
=1+2+22+…+2n-1
=
| 1-2n |
| 1-2 |
=2n-1.
(2)证明:∵bn=
| 2n |
| anan+1 |
| 2n |
| (2n-1)(2n+1-1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
∴b1+b2+…bn=1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
=1-
| 1 |
| 2n+1-1 |
∴对一切正整数n,有b1+b2+…bn<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,是中档题,解题时要认真审题,注意累加法和裂项求和法的合理运用.
练习册系列答案
相关题目