题目内容

如图,网格纸上小正方形的边长为1,粗线或粗虚线画出了某简单组合体的三视图和直观图(斜二测画法),则此简单几何体的体积是
 
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图可知,该几何体是一个三棱锥挖去四分之一个圆锥剩下的部分,三棱锥的底面是一个腰长为4的等腰直角三角形,高为4,还原的圆锥的底面半径为2,高为4,代入棱锥体积公式,可得答案.
解答: 解:由已知中的三视图可得:该几何体是一个三棱锥挖去四分之一个圆锥剩下的部分,三棱锥的底面是一个腰长为4的等腰直角三角形,高为4,还原的圆锥的底面半径为2,高为4,
故体积V=
1
3
×
1
2
×4×4×4-
1
4
×
1
3
×π×22×4
=
32
3
-
4
3
π

故答案为:
32
3
-
4
3
π
点评:本题考查的知识点是由三视图,求体积,其中根据已知分析出几何体的形状是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网