题目内容
12.集合A={x∈N|x≤6},B={x∈R||2-x|>2},则A∩B=( )| A. | {0,5,6} | B. | {5,6} | C. | {4,6} | D. | {x|4<x≤6} |
分析 先化简集合A、B,再求出A∩B的值.
解答 解:集合A={x∈N|x≤6}={0,1,2,3,4,5,6},
B={x∈R||2-x|>2}={x∈R|x<0或x>4},
所以A∩B={5,6}.
故选:B.
点评 本题考查了集合的化简与运算问题,是基础题目.
练习册系列答案
相关题目
3.已知全集U=R,若A={y|y=2x,x≤0},则∁RA=( )
| A. | (-∞,0]∪(1,+∞) | B. | (1,+∞) | C. | (-∞,0)∪[1,+∞) | D. | (-∞,0) |
20.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制,各等级划分标准见表,规定:A,B,C三级为合格等级,D为不合格等级.
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图所示,样本中分数在80分及以上的所有数据的茎叶图如图所示.

(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(3)在选取的样本中,从A,C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.
| 百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
| 等级 | A | B | C | D |
(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(3)在选取的样本中,从A,C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.
7.已知集合M={x|x2>1},N={-2,-1,0,1,2},则M∩N=( )
| A. | {0} | B. | {2} | C. | {-2,-1,1,2} | D. | {-2,2} |
4.若复数$z=\frac{1-3i}{1+i}$,则|z+1|=( )
| A. | 3 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
2.我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽取了50人,他们月收入的频数分布及对“延迟退休年龄”反对的人数如下表.
(Ⅰ)由以上统计数据估算月收入高于5500的调查对象中,持反对态度的概率;
(Ⅱ)若对月收入在[1500,2500),[2500,3500)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为ξ,求随机变量ξ的分布列和数学期望.
| 月收入(元) | [1500,2500) | [2500,3500) | [3500,4500) | [4500,5500) | [5500,6500) | [6500,7500) |
| 频数 | 5 | 10 | 14 | 11 | 6 | 4 |
| 反对人数 | 4 | 8 | 11 | 6 | 2 | 1 |
(Ⅱ)若对月收入在[1500,2500),[2500,3500)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为ξ,求随机变量ξ的分布列和数学期望.