题目内容
为得到函数y=cosx的图象,只需将函数y=sinx的图象按照向量
平移,则
可以为( )
| a |
| a |
A、(
| ||
B、(-
| ||
C、(0,-
| ||
D、(0,
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:利用函数y=Asin(ωx+φ)的图象变换即可求得答案.
解答:
解:∵f(x)=cosx=sin(x+
),
∴得到函数y=cosx的图象,只需将函数y=sinx的图象向左平移
个单位,
∴
=(-
,0),
故选:B.
| π |
| 2 |
∴得到函数y=cosx的图象,只需将函数y=sinx的图象向左平移
| π |
| 2 |
∴
| a |
| π |
| 2 |
故选:B.
点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查平面向量的坐标表示,属于中档题.
练习册系列答案
相关题目
A、
| ||
B、3+
| ||
C、3
| ||
D、
|
已知x、y满足
,则z=
的取值范围为( )
|
| y-1 |
| x+2 |
A、[0,
| ||
| B、[0,1] | ||
C、(-∞,
| ||
D、[
|
已知集合A={x|x2-2x-3>0},则集合N∩∁RA中元素的个数为( )
| A、无数个 | B、3 | C、4 | D、5 |
将函数f(x)=x3+3x2+3x的图象按向量
平移后得到函数g(x)的图象,若函数g(x)满足g(1-x)+g(1+x)=1,则向量
的坐标是( )
| a |
| a |
| A、(-1,-1) | ||
B、(2,
| ||
| C、(2,2) | ||
D、(-2,-
|