题目内容

9.(1)求定积分${∫}_{0}^{1}$(2x+ex)dx的值;
(2)若关于x的不等式${x^2}+\frac{1}{x}-m≥0$对任意x$∈({-∞,-\frac{1}{2}}]$恒成立,求的m取值范围.

分析 (1)根据定积分的计算法则计算即可,
(2)分类参数,构造函数,利用导数求出函数的最值即可

解答 解:(1):${∫}_{0}^{1}$(2x+ex)dx=(x2+ex)|${\;}_{0}^{1}$=(1+e)-(0-1)=2+e,
(2)∵关于x的不等式${x^2}+\frac{1}{x}-m≥0$对任意x$∈({-∞,-\frac{1}{2}}]$恒成立,
∴m≤x2+$\frac{1}{x}$在(-∞,-$\frac{1}{2}$]上恒成立,
设f(x)=x2+$\frac{1}{x}$,
∴f′(x)=2x-$\frac{1}{{x}^{2}}$<0恒成立,
∴f(x)在(-∞,-$\frac{1}{2}$]上单调递减,
∴f(x)min=f(-$\frac{1}{2}$)=$\frac{1}{4}$-2=-$\frac{7}{4}$,
∴m≤-$\frac{7}{4}$,
故m取值范围为(-∞,-$\frac{7}{4}$]

点评 本题考查利用导数求函数在闭区间上最值的应用,解题时要认真审题,仔细解答,注意导数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网