题目内容

f(x)=cosxcos(x-θ)-
1
2
cosθ,0<θ<π,f(
π
3
)的值最大,则2f(
3x
2
)在x∈[0,
π
3
]上的最小值是
 
考点:三角函数中的恒等变换应用,三角函数的最值
专题:三角函数的求值,三角函数的图像与性质
分析:由三角函数公式可得f(x)=
1
2
cos(2x-θ),由最值结合θ范围可确定θ的值,从而求得f(x),求得2f(
3x
2
)的函数解析式,根据自变量的取值范围即可求出最小值.
解答: 解:由题意可得f(x)=cosxcos(x-θ)-
1
2
cosθ
=cos2xcosθ+sinxcosxsinθ-
1
2
cosθ
=
1+cos2x
2
cosθ+sinxcosxsinθ-
1
2
cosθ
=
1
2
cos(2x-θ)
又∵当x=
π
3
时f(x)取得最大值,
∴2×
π
3
-θ=2kπ,k∈Z,可得:θ=
3
-2kπ,k∈Z,
又∵0<θ<π,
θ=
3
…6分
∴f(x)=
1
2
cos(2x-
3
),
∵x∈[0,
π
3
],
∴2x-
3
∈[-
3
π
3
],
∴2f(
3x
2
)=cos(3x-
3
)∈[-
1
2
3
2
].
故答案为:-
1
2
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的图象与性质,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网