题目内容
7.已知函数f(x)=2ln(3x)+8x,则$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$的值为( )| A. | 10 | B. | -10 | C. | -20 | D. | 20 |
分析 $\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$=-2f′(1),求出函数f(x)的导数,由此能求出其结果.
解答 解:$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$=-2$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{-2△x}$=-2f′(1),
∵f(x)=2ln(3x)+8x,
∴f′(x)=$\frac{2}{x}$+8,
∴f′(1)=2+8=10,
∴-2f′(1)=-20,
故选:C.
点评 本题考查极限的运算,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
20.定义在(-1,1]上的函数f(x)满足f(x)+1=$\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x,若函数g(x)=|f(x)-$\frac{1}{2}$|-mx-m+1在(-1,1]内恰有3个零点,则实数m的取值范围是( )
| A. | ($\frac{3}{2}$,+∞) | B. | ($\frac{3}{2}$,$\frac{25}{8}$) | C. | ($\frac{3}{2}$,$\frac{25}{16}$) | D. | ($\frac{2}{3}$,$\frac{3}{4}$) |
15.抛物线y=4-x2与直线y=4x的两个交点为A、B,点P在抛物线上从A向B运动,当△PAB的面积为最大时,点P的坐标为( )
| A. | (-3,-5) | B. | (-2,0) | C. | (-1,3) | D. | (0,4) |
19.定义在(0,$\frac{π}{2}$),上的函数f(x),f′(x)是导函数,满足f(x)<f′(x)tanx,则下列表达式正确的是( )
| A. | $\sqrt{3}$•f($\frac{π}{4}$)>$\sqrt{2}$•f($\frac{π}{3}$) | B. | f(1)>2•f($\frac{π}{6}$)•sin1 | C. | $\sqrt{2}$•f($\frac{π}{6}$)>f($\frac{π}{4}$) | D. | $\sqrt{3}$•f($\frac{π}{6}$)>f($\frac{π}{3}$) |