题目内容
13.求下列各三角函数的值:cos$\frac{9π}{4}$=$\frac{\sqrt{2}}{2}$;
sin780°=$\frac{\sqrt{3}}{2}$;
sin(-60°)=-$\frac{\sqrt{3}}{2}$;
tan$\frac{8π}{3}$=-$\sqrt{3}$;
sin75°=$\frac{\sqrt{2}+\sqrt{6}}{4}$;
tan45°=1.
分析 根据三角函数的诱导公式以及两角和的正弦公式,对题目中的三角函数求值即可.
解答 解:①cos$\frac{9π}{4}$=cos(2π+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$;
②sin780°=sin(2×360°+60°)=sin60°=$\frac{\sqrt{3}}{2}$;
③sin(-60°)=-sin60°=-$\frac{\sqrt{3}}{2}$;
④tan$\frac{8π}{3}$=tan(3π-$\frac{π}{3}$)=tan(-$\frac{π}{3}$)=-tan$\frac{π}{3}$=-$\sqrt{3}$;
⑤sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°
=$\frac{1}{2}$×$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$;
⑥tan45°=1.
故答案为:$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$,-$\frac{\sqrt{3}}{2}$,-$\sqrt{3}$,$\frac{\sqrt{2}+\sqrt{6}}{4}$,1.
点评 本题考查了三角函数的诱导公式以及三角恒等变换的应用问题,也考查了特殊角的三角函数值的应用问题,是基础题目.
练习册系列答案
相关题目
4.已知等比数列{an}满足a2=$\frac{1}{4}$,a2•a8=4(a5-1),则a4+a5+a6+a7+a8=( )
| A. | 20 | B. | 31 | C. | 62 | D. | 63 |
1.已知O为△ABC的外心,点M(不与点O重合)为边AC的中点,且$\overrightarrow{AO}$=x•$\overrightarrow{AB}$+y•$\overrightarrow{AM}$,|AB|=3,|AC|=4,若x+y=1,则cos∠BAC=( )
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
18.函数y=-cosx-1的最大值是( )
| A. | 1 | B. | 0 | C. | 2 | D. | -1 |
2.设函数y=g(x)在(-∞,+∞)内有定义,对于给定的整数k,定义函数:gk(x)=$\left\{\begin{array}{l}{g(x)(g(x)≤k)}\\{k(g(x)>k)}\end{array}\right.$,取函数g(x)=2-ex-e-x,若对任意x∈(-∞,+∞)恒有gk(x)=g(x),则( )
| A. | k的最大值为2-e-$\frac{1}{e}$ | B. | k的最小值为2-e-$\frac{1}{e}$ | ||
| C. | k的最大值为2 | D. | k的最小值为2 |
3.已知正项数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,且公差相等,则S100=( )
| A. | 50 | B. | 100 | C. | 1500 | D. | 2500 |