题目内容
13.| A. | 动点A′在平面ABC上的射影在线段AF上 | |
| B. | 恒有平面A′GF⊥平面BCED | |
| C. | 三棱锥A′-EFD的体积有最大值 | |
| D. | 异面直线A′E与BD不可能垂直 |
分析 由斜线的射影定理可判断A正确;由面面垂直的判定定理,可判断B正确;由三棱锥的体积公式,可判断C正确;由异面直线所成的角的概念可判断D不正确
解答 解:∵A′D=A′E,△ABC是正三角形,
∴A′在平面ABC上的射影在线段AF上,故A正确;
由A知,平面A′GF一定过平面BCED的垂线,
∴恒有平面A′GF⊥平面BCED,故B正确;
三棱锥A′-FED的底面积是定值,体积由高即A′到底面的距离决定,
当平面A′DE⊥平面BCED时,三棱锥A′-FED的体积有最大值,故C正确;
当(A′E)2+EF2=(A′F)2时,面直线A′E与BD垂直,故④错误.
故选:D.
点评 本题考查了线面、面面垂直的判定定理、性质定理的运用,考查了空间线线、线面的位置关系及所成的角的概念,考查了空间想象能力
练习册系列答案
相关题目
3.若a-i与2+bi互为共轭复数,那么a+b等于( )
| A. | 3 | B. | 1 | C. | 0 | D. | 2 |
1.已知直线l1:(m+2)x-y+5=0与l2:(m+3)x+(18+m)y+2=0垂直,则实数m的值为( )
| A. | 2或4 | B. | 1或4 | C. | 1或2 | D. | -6或2 |
5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,过F2作一条直线(不与x轴垂直)与椭圆交于A,B两点,如果△ABF1恰好为等腰直角三角形,该直线的斜率为( )
| A. | ±1 | B. | ±2 | C. | $±\sqrt{2}$ | D. | $±\sqrt{3}$ |
3.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),则f(1)+f(2)+…+f(100)$=( )
| A. | $-\sqrt{3}$ | B. | $-2\sqrt{3}$ | C. | 0 | D. | $\sqrt{3}$ |