题目内容
4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x,则此双曲线的离心率为( )| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{3}{2}$ |
分析 利用双曲线的渐近线方程,推出a,b的关系,然后求解离心率即可.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x,
可得$\frac{{b}^{2}}{{a}^{2}}=\frac{1}{2}$,即:$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{1}{2}$,解得$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故选:C.
点评 本题考查双曲线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
4.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,非零向量$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,x>0,y>0,若x=2|$\overrightarrow{a}$|,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角θ的最小值为( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
9.设函数f(x)=log2(3x-1),则使得2f(x)>f(x+2)成立的x的取值范围是( )
| A. | (-$\frac{5}{3}$,+∞) | B. | ($\frac{4}{3}$,+∞) | C. | (-∞,-$\frac{1}{3}$)∪($\frac{4}{3}$,+∞) | D. | (-$\frac{1}{3}$,+∞) |
13.“a>4”是“方程x2+ax+a=0有两个负实数根”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
14.已知数列{an}为等差数列,a2=2且满足a2,a3,a5成等比数列,则数列{an}的前10项的和为( )
| A. | 80 | B. | 90 | C. | 20 | D. | 20或90 |