题目内容
13.“a>4”是“方程x2+ax+a=0有两个负实数根”的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 方程x2+ax+a=0有两个负实数根,则$\left\{\begin{array}{l}{△={a}^{2}-4a≥0}\\{-a<0}\\{a>0}\end{array}\right.$,解出即可判断出结论.
解答 解:方程x2+ax+a=0有两个负实数根,则$\left\{\begin{array}{l}{△={a}^{2}-4a≥0}\\{-a<0}\\{a>0}\end{array}\right.$,解得a≥4,
∴“a>4”是“方程x2+ax+a=0有两个负实数根”的充分不必要条件.
故选:A.
点评 本题考查了一元二次方程的实数根与判别式的关系、根与系数的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
8.若二次函数ax2+bx+c=0的两个实数根为-2,3(a<0),则ax2+bx+c>0的解集为( )
| A. | {x|x<-2或x>3} | B. | {x|x<-3或x>2} | C. | {x|-2<x<3} | D. | {x|-3<x<2} |
4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x,则此双曲线的离心率为( )
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{3}{2}$ |
2.
某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中$\overline{a}$是这7个数据的平均数),则输出的S的值是( )
| 观测次数i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 观测数据ai | 5 | 6 | 8 | 6 | 8 | 8 | 8 |
| A. | 1 | B. | $\frac{8}{7}$ | C. | $\frac{9}{7}$ | D. | $\frac{10}{7}$ |
3.设直线l与平面α平行,直线m在平面α上,那么( )
| A. | 直线l平行于直线m | B. | 直线l与直线m异面 | ||
| C. | 直线l与直线m没有公共点 | D. | 直线l与直线m不垂直 |