题目内容
等差数列 {an}中a3+a7-a10=8,a11-a4=7,其前n项和为Sn,求S13.
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:利用等差数列的通项公式和前n项和公式求解.
解答:
解:a3+a7-a10+a11-a4=15,
∴3a7-2a7=15,
∴a7=15,
∴S13=a7•13=195,
∴3a7-2a7=15,
∴a7=15,
∴S13=a7•13=195,
点评:本题考查等差数列的前13项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
已知命题p:?a∈R,且a>0,a+
≥2,命题q:不等式(2-x)(x+1)<0的解集是(-1,2),则下列判断正确的是( )
| 1 |
| a |
| A、p是假命题 |
| B、q是真命题 |
| C、p∧(¬q)是真命题 |
| D、(¬p)∨q是真命题 |
等差数列{an}中,若a3+a7=8,则a2+a3+a4+a5+a6+a7+a8=( )
| A、24 | B、32 | C、28 | D、35 |
f(x)为定义在(-∞,0)∪(0,+∞)上的奇函数,且(0,+∞)为增区间.若f(-1)=0,则当f(x)<0时,x取值范围是( )
| A、(-∞,-1) |
| B、(-∞,-1)∪(0,1) |
| C、(-1,0) |
| D、(-1,0)∪(1,+∞) |