ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏߵķ½³ÌΪy=ax2-1£¬Ö±ÏßlµÄ·½³ÌΪy=
£¬µãA£¨3£¬-1£©¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãÔÚÅ×ÎïÏßÉÏ£®
£¨1£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨2£©ÒÑÖªP£¨
£¬1£©£¬µãF£¨0£¬-
£©ÊÇÅ×ÎïÏߵĽ¹µã£¬MÊÇÅ×ÎïÏßÉϵ͝µã£¬Çó|MP|+|MF|µÄ×îСֵ¼°´ËʱµãMµÄ×ø±ê£»
£¨3£©ÉèµãB¡¢CÊÇÅ×ÎïÏßÉϵ͝µã£¬µãDÊÇÅ×ÎïÏßÓëxÖáÕý°ëÖá½»µã£¬¡÷BCDÊÇÒÔDΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ®ÊÔ̽¾¿Ö±ÏßBCÊÇ·ñ¾¹ý¶¨µã£¿Èô¾¹ý£¬Çó³ö¶¨µãµÄ×ø±ê£»Èô²»¾¹ý£¬Çë˵Ã÷ÀíÓÉ£®
| x |
| 2 |
£¨1£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨2£©ÒÑÖªP£¨
| 1 |
| 2 |
| 15 |
| 16 |
£¨3£©ÉèµãB¡¢CÊÇÅ×ÎïÏßÉϵ͝µã£¬µãDÊÇÅ×ÎïÏßÓëxÖáÕý°ëÖá½»µã£¬¡÷BCDÊÇÒÔDΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ®ÊÔ̽¾¿Ö±ÏßBCÊÇ·ñ¾¹ý¶¨µã£¿Èô¾¹ý£¬Çó³ö¶¨µãµÄ×ø±ê£»Èô²»¾¹ý£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þÇó³öµãA£¨3£¬-1£©¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãÎª×ø±êA¡ä£¨1£¬3£©£¬µãA¡ä£¨1£¬3£©´úÈëy=ax2-1£¬½âµÃa=4£¬ÓÉ´ËÄÜÇó³öÅ×ÎïÏߵķ½³Ì£®
£¨2£©ÓÉF£¨0£¬-
£©ÊÇÅ×ÎïÏߵĽ¹µã£¬Å×ÎïÏߵĶ¥µãΪ£¨0£¬-1£©£¬Çó³öÅ×ÎïÏßµÄ×¼ÏßΪx=-
£¬ÓÉ´ËÄÜÇó³ö|MP|+|MF|µÄ×îСֵ¼°´ËʱµãMµÄ×ø±ê£®
£¨3£©BCËùÔÚµÄÖ±Ïß¾¹ý¶¨µã£¨-
£¬
£©£®Áîy=4x2-1=0£¬µÃDµãµÄ×ø±êΪ£¨
£¬0£©£¬ÀûÓÃÖ±Ïß´¹Ö±µÄÐÔÖʺÍÖ±ÏßбÂʵĹØÏµÄÜÇó³öÖ±ÏßBCµÄ·½³ÌΪ¼´y=2£¨x1+x2£©£¨2x+1£©+
£¬ÓÉ´ËÄÜÖ¤Ã÷Ö±ÏßBC¾¹ý¶¨µã£¨-
£¬
£©£®
£¨2£©ÓÉF£¨0£¬-
| 15 |
| 16 |
| 17 |
| 16 |
£¨3£©BCËùÔÚµÄÖ±Ïß¾¹ý¶¨µã£¨-
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
½â´ð£º
½â£º£¨1£©ÉèµãA£¨3£¬-1£©¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãÎª×ø±êΪA¡ä£¨x£¬y£©£¬
Ôò
£¬½âµÃ
£¬£¨3·Ö£©
°ÑµãA¡ä£¨1£¬3£©´úÈëy=ax2-1£¬½âµÃa=4£¬
¡àÅ×ÎïÏߵķ½³ÌΪy=4x2-1£®£¨4·Ö£©
£¨2£©¡ßF£¨0£¬-
£©ÊÇÅ×ÎïÏߵĽ¹µã£¬Å×ÎïÏߵĶ¥µãΪ£¨0£¬-1£©£¬
¡àÅ×ÎïÏßµÄ×¼ÏßΪx=-
£¬£¨5·Ö£©
¹ýµãM×÷×¼ÏߵĴ¹Ïߣ¬´¹×ãΪA£¬ÓÉÅ×ÎïÏߵ͍ÒåÖª|MF|=|MA|£¬
¡à|MP|+|MF|=|MP|+|MA|¡Ý|PA|£¬
µ±ÇÒ½öµ±P¡¢M¡¢AÈýµã¹²Ïßʱ¡°=¡±³ÉÁ¢£¬£¨7·Ö£©
¼´µ±µãMΪ¹ýµãPËù×÷µÄÅ×ÎïÏß×¼ÏߵĴ¹ÏßÓëÅ×ÎïÏߵĽ»µãʱ£¬
|MP|+|MF|È¡×îСֵ£¬
¡à£¨|MP|+|MF|£©min=1-£¨-
£©=
£¬
ÕâʱµãMµÄ×ø±êΪ£¨
£¬0£©£®£¨9·Ö£©
£¨3£©BCËùÔÚµÄÖ±Ïß¾¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨-
£¬
£©£¬
Áîy=4x2-1=0£¬µÃDµãµÄ×ø±êΪ£¨
£¬0£©£¬
ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬x1¡Ùx2£¬
ÔòkBC=
=
=4£¨x1+x2£©£¬£¨10·Ö£©
kBD=4(x1+
)£¬kCD=4(x2+
)£¬£¨11·Ö£©
¡ßBD¡ÍCD£¬¡àkBD•kCD=16(x1+
)(x2+
)=-1£¬
¼´x1x2=-
-
(x1+x2)£¬
Ö±ÏßBCµÄ·½³ÌΪy-y1=4£¨x1+x2£©£¨x-x1£©£¬
¼´y=4£¨x1+x2£©x-4x1 x2-1=2£¨x1+x2£©£¨2x+1£©+
£¬£¨13·Ö£©
¡àÖ±ÏßBC¾¹ý¶¨µã£¨-
£¬
£©£®£¨14·Ö£©
|
|
°ÑµãA¡ä£¨1£¬3£©´úÈëy=ax2-1£¬½âµÃa=4£¬
¡àÅ×ÎïÏߵķ½³ÌΪy=4x2-1£®£¨4·Ö£©
£¨2£©¡ßF£¨0£¬-
| 15 |
| 16 |
¡àÅ×ÎïÏßµÄ×¼ÏßΪx=-
| 17 |
| 16 |
¹ýµãM×÷×¼ÏߵĴ¹Ïߣ¬´¹×ãΪA£¬ÓÉÅ×ÎïÏߵ͍ÒåÖª|MF|=|MA|£¬
¡à|MP|+|MF|=|MP|+|MA|¡Ý|PA|£¬
µ±ÇÒ½öµ±P¡¢M¡¢AÈýµã¹²Ïßʱ¡°=¡±³ÉÁ¢£¬£¨7·Ö£©
¼´µ±µãMΪ¹ýµãPËù×÷µÄÅ×ÎïÏß×¼ÏߵĴ¹ÏßÓëÅ×ÎïÏߵĽ»µãʱ£¬
|MP|+|MF|È¡×îСֵ£¬
¡à£¨|MP|+|MF|£©min=1-£¨-
| 17 |
| 16 |
| 33 |
| 16 |
ÕâʱµãMµÄ×ø±êΪ£¨
| 1 |
| 2 |
£¨3£©BCËùÔÚµÄÖ±Ïß¾¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨-
| 1 |
| 2 |
| 1 |
| 4 |
Áîy=4x2-1=0£¬µÃDµãµÄ×ø±êΪ£¨
| 1 |
| 2 |
ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬x1¡Ùx2£¬
ÔòkBC=
| y 1-y2 |
| x1-x2 |
| 4(x12-x22) |
| x1-x2 |
kBD=4(x1+
| 1 |
| 2 |
| 1 |
| 2 |
¡ßBD¡ÍCD£¬¡àkBD•kCD=16(x1+
| 1 |
| 2 |
| 1 |
| 2 |
¼´x1x2=-
| 5 |
| 16 |
| 1 |
| 2 |
Ö±ÏßBCµÄ·½³ÌΪy-y1=4£¨x1+x2£©£¨x-x1£©£¬
¼´y=4£¨x1+x2£©x-4x1 x2-1=2£¨x1+x2£©£¨2x+1£©+
| 1 |
| 4 |
¡àÖ±ÏßBC¾¹ý¶¨µã£¨-
| 1 |
| 2 |
| 1 |
| 4 |
µãÆÀ£º±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¿¼²éÁ½ÌõÏ߶κÍ×îСֵµÄÇ󷨣¬¿¼²éÖ±Ïß¹ý¶¨µãµÄÅжÏÓëÖ¤Ã÷£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ¼Ûת»¯Ë¼ÏëºÍº¯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿