题目内容

20.已知sinαcosα=$\frac{1}{8}$,且α是第三象限角.
求$\frac{{1-{{cos}^2}α}}{{cos(\frac{3π}{2}-α)+cosα}}$+$\frac{{sin(α-\frac{7π}{2})+sin(2017π-α)}}{{{{tan}^2}α-1}}$.

分析 利用同角三角函数的基本关系、诱导公式把要求的式子化为-(sinα+cosα),再根据sinαcosα=$\frac{1}{8}$,且α是第三象限角求得sinα+cosα的值,可得原式的值.

解答 解:原式=$\frac{{{{sin}^2}α}}{-sinα+cosα}+\frac{cosα+sinα}{{\frac{{{{sin}^2}α-{{cos}^2}α}}{{{{cos}^2}α}}}}$=$\frac{{-{{sin}^2}α}}{sinα-cosα}+\frac{{(cosα+sinα){{cos}^2}α}}{{{{sin}^2}α-{{cos}^2}α}}$=$\frac{{-{{sin}^2}α}}{sinα-cosα}+\frac{{{{cos}^2}α}}{sinα-cosα}$=$\frac{{{{cos}^2}α-{{sin}^2}α}}{sinα-cosα}=-(sinα+cosα)$,
∵$sinαcosα=\frac{1}{8}$,∴${(sinα+cosα)^2}=1+2sinαcosα=\frac{5}{4}$.
∵α是第三象限的角,
∴sinα<0,cosα<0,∴$sinα+cosα=-\frac{{\sqrt{5}}}{2}$,
∴原式=$\frac{{\sqrt{5}}}{2}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网