题目内容

16.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤2}\\{2-lo{g}_{2}x,x>2}\end{array}\right.$若a,b,c互不相等,且f(a)=f(b)=f(c),则ab+bc+ca的取值范围是(  )
A.(1,4)B.(2,4)C.(6,9)D.(7,9)

分析 画出函数f(x)的图象,设a<b<c,可得0<a<1<b<2<c<4,再由条件去掉绝对值,运用对数的运算性质,可得ab=1,bc=4,log2a=log2c-2,即有ab+bc+ac=ac+5,求得log2(ac)的范围,即可得到所求范围.

解答 解:画出函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤2}\\{2-lo{g}_{2}x,x>2}\end{array}\right.$的图象,
设a<b<c,可得0<a<1<b<2<c<4,
由f(a)=f(b)=f(c),
可得|log2a|=|log2b|=2-log2c,
即为-log2a=log2b=2-log2c,
即log2a+log2b=0,log2b+log2c=2,log2a=log2c-2,
即有ab=1,bc=4,
则ab+bc+ca=1+4+ac=ac+5,
由于log2(ac)=log2a+log2c=2log2c-2,
由2<c<4,可得0<2log2c-2<2,
即有1<ac<4,即6<ac+5<9.
故选C.

点评 本题考查分段函数的运用,考查对数函数的图象和运用,注意运用数形结合的思想方法和对数函数的单调性和运算性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网