题目内容

10.在直角坐标系xOy中,直线C1的参数方程是$\left\{\begin{array}{l}{x=4-\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C2:ρ=4sinθ
(Ⅰ)求C1的普通方程和C2的直角坐标方程
(Ⅱ)判断直线C1与曲线C2的位置关系,若相交,求出弦长.

分析 (Ⅰ)消去t,求出C1的方程即可,由ρ2=x2+y2,ρsinθ=y,求出c2的方程即可;(Ⅱ)联立方程组,求出弦长即可.

解答 解:(Ⅰ)∵C1的参数方程是$\left\{\begin{array}{l}{x=4-\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),
∴C1的方程是:x+y=3;
由C2:ρ=4sinθ,
ρ2=x2+y2,ρsinθ=y,
得x2+y2=4y,
故x2+(y-2)2=4;
(Ⅱ)由$\left\{\begin{array}{l}{x+y=3}\\{{x}^{2}{+(y-2)}^{2}=4}\end{array}\right.$,
得2x2-2x-3=0,
故△=28>0,
故直线和圆相交,
x1+x2=5,x1x2=$\frac{9}{2}$,
故弦长d=$\sqrt{{{(x}_{1}{+x}_{2})}^{2}-{{4x}_{1}x}_{2}}$=$\sqrt{7}$.

点评 本题考查了极坐标方程,参数方程以及直角坐标方程的转化,考查直线和圆的位置关系,考查弦长问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网