题目内容

已知函数f(x)=2(m+1)x2+4mx+2m-1.
(1)m为何值时,函数的图象与x轴有两个零点;
(2)如果函数两个零点在原点左右两侧,求实数m的取值范围.
考点:二次函数的性质,函数零点的判定定理
专题:函数的性质及应用
分析:(1)将函数的零点转化为方程的根,二次型方程有两个根,令其判别式大于等于0且二次项系数不为0,列出不等式求出m的范围.
(2)先判断二次项系数为0时不合题意,再讨论原点的两侧各有一个,列出不等式求出m的范围.
解答: 解:(1)函数f(x)的图象与x轴有两个零点,即方程2(m+1)x2+4mx+2m-1=0有两个不相等的实根,
△=16m2-8(m+1)(2m-1)>0
2(m+1)≠0
得m<1且m≠-1
∴当m<1且m≠-1时,函数f(x)的图象与x轴有两个零点.
(2)m=-1时,则f(x)=-4x-3
从而由-4x-3=0得x=-
3
4
<0
∴函数的零点不在原点的右侧,
故m≠-1
当m≠-1时,有3种情况:
①原点的两侧各有一个,则
△=16m2-8(m+1)(2m-1)>0
x1x2=
2m-1
2(m+1)
<0
解得-1<m<
1
2
点评:解决二次方程的根的个数问题利用判别式;解决含参数的函数的性质问题常需要对参数分类讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网