题目内容

已知双曲线y2-
x2
3
=1的两个焦点为F1、F2,若A、B分别为渐近线l1、l2上的点,且2|AB|=5|F1F2|.求线段AB的中点M的轨迹方程,并说明是什么曲线?
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:设A(x1,y1),B(x2,y2),AB的中点M(x,y),利用2|AB|=5|F1F2|,建立方程,根据A、B分别为l1、l2上的点,化简可得轨迹方程及对应的曲线.
解答: 解:设A(x1,y1),B(x2,y2),AB的中点M(x,y)
∵2|AB|=5|F1F2|,∴|AB|=
5
2
|F1F2|=10,∴
(x1-x2)2+(y1-y2)2
=10
∵y1=
3
3
x1,y2=-
3
3
x2,2x=x1+x2,2y=y1+y2
∴y1+y2=
3
3
(x1-x2),y1-y2=
3
3
(x1+x2),
3×(2y)2+
1
3
×(2x)2
=100
x2
75
+
3y2
25
=1
,对应的曲线为椭圆.
点评:本题考查轨迹方程的求解,考查双曲线的几何性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网