题目内容
已知函数f(x)=x2的定义域是{-2,1},则该函数的值域是 .
考点:函数的值域
专题:函数的性质及应用
分析:根据函数定义域和值域之间的关系即可得到结论.
解答:
解:∵函数f(x)=x2的定义域是{-2,1},
∴当x=1时,y=1,
当x=-2时,y=4,
即函数的值域为{4,1},
故答案为:{4,1}
∴当x=1时,y=1,
当x=-2时,y=4,
即函数的值域为{4,1},
故答案为:{4,1}
点评:本题主要考查函数值域的求解,比较基础.
练习册系列答案
相关题目
计算定积分
(x2+sinx)dx=( )
| ∫ | 1 -1 |
A、
| ||
B、
| ||
C、
| ||
D、
|