题目内容
10.在极坐标系中,直线ρcosθ+$\sqrt{3}$ρsinθ+1=0与圆ρ=2acosθ(a>0)相切,则a=1.分析 把极坐标方程化为直角坐标方程,利用直线与圆相切的性质即可得出.
解答 解:直线ρcosθ+$\sqrt{3}$ρsinθ+1=0化为直角坐标方程:x+$\sqrt{3}$y+1=0.
圆ρ=2acosθ(a>0)即ρ2=2ρacosθ(a>0),可得直角坐标方程:x2+y2=2ax,配方为:(x-a)2+y2=a2.
可得圆心(a,0),半径a.
∵直线ρcosθ+$\sqrt{3}$ρsinθ+1=0与圆ρ=2acosθ(a>0)相切,
∴$\frac{|a+1|}{2}$=a,a>0,解得a=1.
故答案为:1.
点评 本题考查了极坐标方程化为直角坐标方程、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.Sn是数列{an}的前n项和,Sn=3an-2a1,a3=$\frac{1}{4}$,bn=anlnan,则数列{bn}的最小项是( )
| A. | 第3项 | B. | 第4项 | C. | 第5项 | D. | 第6项 |
18.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为( )
| A. | 12 | B. | 24 | C. | 36 | D. | 48 |
5.下列函数中为奇函数的是( )
| A. | y=x+cosx | B. | y=x+sinx | C. | $y=\sqrt{x}$ | D. | y=e-|x| |
2.已知直线x+y=m(m>0)与圆x2+y2=1相交于P,Q两点,且∠POQ=120°(其中O为原点),那么m的值是( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
19.甘肃省瓜州县自古就以生产“美瓜”面名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,调查表明,蜜瓜的甜度与海拔高度,日照时长,温差有极强的相关性,分别用x,y,z表示蜜瓜甜度与海拔高度,日照时长,温差的相关程度,big对它们进行量化:0表示一般,1表示良,2表示优,在用综合指标w=x+y+z的值平定蜜瓜的顶级,若w≥4,则为一级;若2≤w≤3,则为二级;若0≤w≤1,则为三级,今年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:
(1)若有蜜瓜种植地110块,试估计等级为三家的蜜瓜种植地的数量;
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.
| 种植地编号 | A | B | C | D | E |
| (x,y,z) | (1,0,0) | (2,2,1) | (0,1,1) | (2,0,2) | (1,1,1) |
| 种植地编号 | F | G | H | I | J |
| (x,y,z) | (1,1,2) | (2,2,2) | (0,0,1) | (2,2,1) | (0,2,1) |
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.