ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÖ±Ïßl1£ºx=2£¬l2£º3x+4y-12=0£¬l3£ºx-2y-6=0£®£¨1£©Éèl1Óël2µÄ½»µãΪA£¬l1Óël3µÄ½»µãΪB£¬l2Óël3µÄ½»µãΪC£®ÇóA£¬B£¬CµÄ×ø±ê£»
£¨2£©Éè$\left\{\begin{array}{l}x¡Ý2\\ 3x+4y-12¡Ü0\\ x-2y-6¡Ü0\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòΪD£¬µãM£¨x£¬y£©¡ÊD£¬N£¨3£¬1£©£®
¢ÙÇó|MN|µÄ×îСֵ£»
¢ÚÇó$\frac{y}{x}$µÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÁªÁ¢·½³Ì×éÇó½â½»µã×ø±ê¼´¿É£®
£¨2£©»³öÔ¼ÊøÌõ¼þµÄ¿ÉÐÐÓò£¬ÀûÓþàÀ빫ʽÅжÏ×îÓŽ⣬Çó½â¢Ù£»ÀûÓÃÖ±ÏßµÄбÂÊÇó½â¢Ú¼´¿É£®
½â´ð ½â£º£¨1£©Ö±Ïßl1£ºx=2£¬l2£º3x+4y-12=0£¬l3£ºx-2y-6=0£®l1Óël2µÄ½»µãΪA£¬
¼´$\left\{\begin{array}{l}{x=2}\\{3x+4y-12=0}\end{array}\right.$£»½âµÃA£¨2£¬$\frac{3}{2}$£©
l1Óël3µÄ½»µãΪB£¬¼´£º$\left\{\begin{array}{l}{x=2}\\{x-2y-6=0}\end{array}\right.$½âµÃB£¨2£¬-2£©£»
l2Óël3µÄ½»µãΪC£®¼´$\left\{\begin{array}{l}{3x+4y-12=0}\\{x-2y-6=0}\end{array}\right.$£¬½âµÃC£¨$\frac{24}{5}£¬-\frac{3}{5}$£©
$A£¨2£¬\frac{3}{2}£©£¬B£¨2£¬-2£©£¬C£¨\frac{24}{5}£¬-\frac{3}{5}£©$£» £¨3·Ö£©
£¨2£©×÷³ö¿ÉÐÐÓòÈçÏÂͼ£º
¡£¨5·Ö£©
¢Ù|MN|µÄ×îСֵΪNµ½Ö±Ïßl2µÄ¾àÀ룬
ËùÒÔ$|MN{|}_{min}=\frac{\left|9+4-12\right|}{\sqrt{{3}^{2}+{4}^{2}}}=\frac{1}{5}$£»¡£¨8·Ö£©
¢Ú$\frac{y}{x}$±íʾ¿ÉÐÐÓòÄڵĵãÓëÔµãÁ¬ÏßµÄбÂÊ£¬ÓÉͼ֪×î´óֵΪ${k}_{OA}=\frac{3}{4}$£¬×îСֵΪkOB=-1£¬
ËùÒÔ$\frac{y}{x}$µÄ·¶Î§Îª$[-1£¬\frac{3}{4}]$¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬ÀûÓÃzµÄ¼¸ºÎÒâÒ壬ͨ¹ýÊýÐνáºÏÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | -$\frac{3}{4}$ | B£® | $\frac{3}{4}$ | C£® | $-\frac{3}{5}$ | D£® | $\frac{4}{5}$ |
| A£® | $\frac{4}{9}$ | B£® | $\frac{2}{9}$ | C£® | $\frac{4}{27}$ | D£® | $\frac{2}{27}$ |
| A£® | -$\frac{3}{4}$ | B£® | $\frac{3}{4}$ | C£® | -$\frac{\sqrt{7}}{4}$ | D£® | $\frac{\sqrt{7}}{4}$ |
| A£® | $\frac{1}{3}$ | B£® | $\frac{1}{2}$ | C£® | 1 | D£® | $\frac{2}{3}$ |