ÌâÄ¿ÄÚÈÝ

8£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¬F2£¬ÓÒ¶¥µãΪA£¬É϶¥µãΪB£¬×ø±êϵԭµãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{2\sqrt{21}}{7}$£¬ÍÖÔ²µÄÀëÐÄÂÊÊÇ$\frac{1}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èç¹û¶¯Ö±Ïßl£ºy=kx+nÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬µãF1£¬F2ÔÚÖ±ÏßlÉϵÄÕýͶӰ·Ö±ðÊÇP£¬Q£¬ÇóËıßÐÎF1PQF2Ãæ»ýSµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬¼´a2=2b2£®¸ù¾ÝÈý½ÇÐÎOABÃæ»ýÏàµÈ£º$\frac{1}{2}$ab=$\frac{1}{2}$¡Á$\frac{2\sqrt{21}}{7}$•$\sqrt{{a}^{2}+{b}^{2}}$£¬´úÈë¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉ¡÷=0£¬4k2-n2+3=0£¬ÓÉF1P¡Íl£¬F2Q¡Íl£¬Ö±½ÇÌÝÐÎF1PQF2ÖÐλÏß³¤d1=$\frac{Ø­nØ­}{\sqrt{1+{k}^{2}}}$£¬µãF2£¨1£¬0£©Ö±ÏßF1PµÄ¾àÀëd2=$\frac{2}{\sqrt{1+{k}^{2}}}$£¬${S}_{{F}_{1}PQ{F}_{2}}$=d1•d2=$\frac{2Ø­nØ­}{1+{k}^{2}}$=2$\sqrt{\frac{4{k}^{2}+3}{£¨1+{k}^{2}£©^{2}}}$£¬Ôò¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÇóµÃËıßÐÎF1PQF2Ãæ»ýSµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½¹µãÔÚxÖáÉÏ£¬
ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬¼´a2=2b2£®
ÓÉ×ø±êϵԭµãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{2\sqrt{21}}{7}$£¬
Ôò$\frac{1}{2}$ab=$\frac{1}{2}$¡Á$\frac{2\sqrt{21}}{7}$•$\sqrt{{a}^{2}+{b}^{2}}$£¬
¡à$\frac{\sqrt{3}}{2}$a2=$\frac{2\sqrt{21}}{7}$$\sqrt{{a}^{2}+\frac{3}{4}{a}^{2}}$£¬
½âµÃ£ºa=2£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©ÓÉÖ±ÏßlÓëÍÖÔ²½öÓÐÒ»¸ö¹«¹²µã£¬
¡à$\left\{\begin{array}{l}{y=kx+n}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨3+4k2£©x2+8knx=4n2-12=0£¬
ÓÉ¡÷=0£¬4k2-n2+3=0£¬
ÓÉF1P¡Íl£¬F2Q¡Íl£¬
µ±¢Ùk¡Ù0£¬ÔÚÖ±½ÇÌÝÐÎF1PQF2ÖÐλÏß³¤d1=$\frac{Ø­nØ­}{\sqrt{1+{k}^{2}}}$£¬
Ö±ÏßF1PµÄ·½³ÌΪ£ºx+ky+1=0£¬
µãF2£¨1£¬0£©Ö±ÏßF1PµÄ¾àÀëd2=$\frac{2}{\sqrt{1+{k}^{2}}}$£¬
${S}_{{F}_{1}PQ{F}_{2}}$=d1•d2=$\frac{2Ø­nØ­}{1+{k}^{2}}$=2$\sqrt{\frac{4{k}^{2}+3}{£¨1+{k}^{2}£©^{2}}}$£¬
Áît=3+4k2£¬
¡àS=8$\frac{t}{2{t}^{2}+2t+1}$=8$\sqrt{\frac{1}{t+\frac{1}{t}+2}}$£¬
ÓÑt£¾3£¬ÓÉË«¹´º¯ÊýÖªSÔÚt£¾3Éϵ¥µ÷µÝ¼õ£¬
¡à0£¼S£¼2$\sqrt{3}$£¬
¢Úµ±k=0ʱ£¬n=¡À$\sqrt{3}$£¬S=2$\sqrt{3}$£¬
×ÛÉÏËùÊö£ºËıßÐÎF1PQF2Ãæ»ýSȡֵ·¶Î§Îª£¨0£¬2$\sqrt{3}$]£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬Ë«¹´º¯ÊýµÄµ¥µ÷ÐÔµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø