题目内容

4.数列0,$-\frac{1}{3}$,$\frac{1}{2}$,$-\frac{3}{5}$,$\frac{2}{3}$,…的通项公式为(  )
A.${a_n}={(-1)^n}•\frac{n-2}{n+1}$B.${a_n}={(-1)^{n+1}}•\frac{n-1}{n+2}$
C.${a_n}={(-1)^{n-1}}•\frac{n-1}{n+1}$D.${a_n}={(-1)^{n-1}}•\frac{n-2}{n+2}$

分析 根据题意可得该数列为$\frac{1-1}{1+1}$,-$\frac{2-1}{2+1}$,$\frac{3-1}{3+1}$,-$\frac{4-1}{4+1}$,$\frac{5-1}{5+1}$,…,即可得到数列的通项公式

解答 解:数列0,$-\frac{1}{3}$,$\frac{1}{2}$,$-\frac{3}{5}$,$\frac{2}{3}$,…即为$\frac{1-1}{1+1}$,-$\frac{2-1}{2+1}$,$\frac{3-1}{3+1}$,-$\frac{4-1}{4+1}$,$\frac{5-1}{5+1}$,…,
∴数列0,$-\frac{1}{3}$,$\frac{1}{2}$,$-\frac{3}{5}$,$\frac{2}{3}$,…的通项公式为an=(-1)n-1•$\frac{n-1}{n+1}$,
故选:C

点评 本题考查了观察分析归纳得到数列的通项公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网