题目内容
1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴端点到右焦点F(1,0)的距离为2.(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线交椭圆C于A,B两点,交直线l:x=4于点P,若|PA|=λ1|AF|,|PB|=λ2|BF|,求证:λ1-λ2为定值.
分析 (Ⅰ)由椭圆的短轴端点到右焦点F(1,0)的距离为2,列出方程组,求出a,b,c,由此能求出椭圆的方程.
(Ⅱ)设过F点的直线方程为y=k(x-1),A(x1,y1),B(x2,y2),P(4,3k),F(1,0),(令x1<x2),推导出${λ}_{1}=\frac{{x}_{1}-4}{1-{x}_{1}}$,${λ}_{2}=\frac{{x}_{2}-4}{1-{x}_{2}}$,联立$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2-8k2x+4k2-12=0,由此利用根的判别式、韦达定理、弦长公式,结合已知条件能证明λ1-λ2为定值.
解答 解:(Ⅰ)∵椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴端点到右焦点F(1,0)的距离为2,![]()
∴$\left\{\begin{array}{l}{c=1}\\{a=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,∴c=1,a=2,b2=a2-c2=3,
∴椭圆的方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
证明:(Ⅱ)设过F点的直线方程为y=k(x-1),A(x1,y1),B(x2,y2),P(4,3k),F(1,0),(令x1<x2),
$\overrightarrow{PA}$=(x1-4,y1-3k),$\overrightarrow{AF}$=(1-x1,-y1),$\overrightarrow{PB}$=(x2-4,y2-3k),$\overrightarrow{BF}$=(1-x2,-y2),
∵|PA|=λ1|AF|,|PB|=λ2|BF|,
∴${λ}_{1}=\frac{{x}_{1}-4}{1-{x}_{1}}$,${λ}_{2}=\frac{{x}_{2}-4}{1-{x}_{2}}$,
联立$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2-8k2x+4k2-12=0,
△>0,${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{3+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
∴λ1-λ2=$\frac{{x}_{1}-4}{1-{x}_{1}}$-$\frac{{x}_{2}-4}{1-{x}_{2}}$
=$\frac{3({x}_{2}-{x}_{1})}{1-({x}_{1}+{x}_{2})+{x}_{1}{x}_{2}}$
=$\frac{3\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}}{1-({x}_{1}+{x}_{2})+{x}_{1}{x}_{2}}$
=$\frac{3\sqrt{(\frac{8{k}^{2}}{3+4{k}^{2}})^{2}-4×\frac{4{k}^{2}-12}{3+4{k}^{2}}}}{1-\frac{8{k}^{2}}{3+4{k}^{2}}+\frac{4{k}^{2}-12}{3+4{k}^{2}}}$
=$\frac{\frac{18}{3+4{k}^{2}}}{\frac{-9}{3+4{k}^{2}}}$=-2.
∴λ1-λ2为定值-2.
点评 本题考查椭圆方程的求法,考查代数式的和为定值的证明,考查椭圆、直线方程、韦达定理、根的判别式、弦长公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
| A. | 6 | B. | 8 | C. | 10 | D. | 12 |
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
| A. | $\frac{1}{3}$ | B. | $\frac{2}{π}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |