题目内容
函数y=cosx图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y=cosωx,则ω的值为( )
| A、2 | ||
B、
| ||
| C、4 | ||
D、
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:直接由函数图象的周期变化求得ω的值.
解答:
解:把函数y=cosx图象上各点的纵坐标不变,横坐标变为原来的2倍,
所得图象对应的函数解析式为y=cos
x,
∴ω的值为
.
故选:B.
所得图象对应的函数解析式为y=cos
| 1 |
| 2 |
∴ω的值为
| 1 |
| 2 |
故选:B.
点评:本题考查了y=Asin(ωx+φ)型函数的周期变化,是基础题.
练习册系列答案
相关题目
在等差数列{an}中,公差d>0,a2009,a2010是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn>0的最小自然数n=( )
| A、4018 | B、4017 |
| C、2009 | D、2010 |
长方体ABCD-A1B1C1D1中,AB=1,B1C、C1D与底面ABCD所成的角分别为45°、60°,则长方体ABCD-A1B1C1D1的外接球的体积为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
不等式x2≥3x的解集是( )
| A、{x|0≤x≤3} |
| B、{x|x≤0,或x≥3} |
| C、{x|0<x<3} |
| D、{x|x<0,或x>3} |
已知F1、F2是平面内的两个定点,且|F1F2|=8,在平面内动点M满足|MF1|-|MF2|=6,则M点的轨迹是( )
| A、椭圆 | B、双曲线 |
| C、双曲线的一支 | D、两条射线 |
下列四个命题:
①“所有很小的正数”能构成一个集合;
②方程(x-1)2=0的解的集合是{1,1};
③{1,3,5,7}与{3,7,5,1}表示同一个集合;
④集合{(x,y)|y=x2-1}与{y|y=x2-1}表示同一个集合.
其中正确的是( )
①“所有很小的正数”能构成一个集合;
②方程(x-1)2=0的解的集合是{1,1};
③{1,3,5,7}与{3,7,5,1}表示同一个集合;
④集合{(x,y)|y=x2-1}与{y|y=x2-1}表示同一个集合.
其中正确的是( )
| A、仅有①、④ | B、仅有②、③ |
| C、仅有③ | D、仅有③、④ |
若0<x<y<1,则( )
| A、3y<3x | ||||
| B、logx3>logy3 | ||||
| C、log4x>log4y | ||||
D、(
|
若
<0,化简y=
-
-3的结果为( )
| x+2 |
| 3x-5 |
| 25-30x+9x2 |
| (x+2)2 |
| A、y=-4x |
| B、y=2-x |
| C、y=3x-4 |
| D、y=5-x |